Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Uyển Nhi
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 7 2021 lúc 22:37

Bài 1: 

a) Ta có: \(\dfrac{17}{6}-x\left(x-\dfrac{7}{6}\right)=\dfrac{7}{4}\)

\(\Leftrightarrow\dfrac{17}{6}-x^2+\dfrac{7}{6}x-\dfrac{7}{4}=0\)

\(\Leftrightarrow-x^2+\dfrac{7}{6}x+\dfrac{13}{12}=0\)

\(\Leftrightarrow-12x^2+14x+13=0\)

\(\Delta=14^2-4\cdot\left(-12\right)\cdot13=196+624=820\)

Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{14-2\sqrt{205}}{-24}=\dfrac{-7+\sqrt{205}}{12}\\x_2=\dfrac{14+2\sqrt{2015}}{-24}=\dfrac{-7-\sqrt{205}}{12}\end{matrix}\right.\)

b) Ta có: \(\dfrac{3}{35}-\left(\dfrac{3}{5}-x\right)=\dfrac{2}{7}\)

\(\Leftrightarrow\dfrac{3}{5}-x=\dfrac{3}{35}-\dfrac{10}{35}=\dfrac{-7}{35}=\dfrac{-1}{5}\)

hay \(x=\dfrac{3}{5}-\dfrac{-1}{5}=\dfrac{3}{5}+\dfrac{1}{5}=\dfrac{4}{5}\)

Uyển Nhi
12 tháng 7 2021 lúc 19:33

ai giúp mik vs

Nguyễn Lê Phước Thịnh
12 tháng 7 2021 lúc 22:38

Bài 3: 

a) Ta có: \(2x-3=x+\dfrac{1}{2}\)

\(\Leftrightarrow2x-x=\dfrac{1}{2}+3\)

\(\Leftrightarrow x=\dfrac{7}{2}\)

b) Ta có: \(4x-\left(x+\dfrac{1}{2}\right)=2x-\left(\dfrac{1}{2}-5\right)\)

\(\Leftrightarrow3x-\dfrac{1}{2}-2x+\dfrac{1}{2}-5=0\)

\(\Leftrightarrow x=5\)

Linh Vi
Xem chi tiết
Xem chi tiết

Các bạn giúp mình giải với nhé! Đúng thì mình k đúng nhé. Cảm ơn các bạn nhiều lắm. Yêu cả nhà.

Khách vãng lai đã xóa
Phạm Thành Đông
28 tháng 2 2021 lúc 17:57

\(1.\left(x-5\right)^{23}.\left(y+2\right)^7=0\)

\(\Rightarrow\hept{\begin{cases}\left(x-5\right)^{23}=0\\\left(y+2\right)^7=0\end{cases}\Rightarrow\hept{\begin{cases}\left(x-5\right)^{23}=0^{23}\\\left(y+2\right)^7=0^7\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}x-5=0\\y+2=0\end{cases}\Rightarrow\hept{\begin{cases}x=0+5\\y=0-2\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}x=5\\y=-2\end{cases}}\)

Vậy \(\left(x;y\right)=\left(5;-2\right)\)

Khách vãng lai đã xóa
Phạm Thành Đông
28 tháng 2 2021 lúc 18:06

2. \(A=\left(x-2\right)^2+|y+3|+7\)

Ta có :

\(\hept{\begin{cases}\left(x-2\right)^2\ge0\forall x\\|y+3|\ge0\forall y\end{cases}}\)

\(\Rightarrow\left(x-2\right)^2+|y+3|\ge0\forall x;y\)

\(\Rightarrow\left(x-2\right)^2+|y+3|+7\ge7\forall x;y\)

\(\Rightarrow A\ge7\forall x;y\)

Dấu bằng xảy ra

\(\Leftrightarrow\hept{\begin{cases}\left(x-2\right)^2=0\\|y+3|=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-2=0\\y+3=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2\\y=-3\end{cases}}}\)

Vậy GTNN của A là 7 khi \(\left(x;y\right)=\left(2;-3\right)\)

Khách vãng lai đã xóa
FG REPZ
Xem chi tiết
Kiều Vũ Linh
12 tháng 10 2021 lúc 14:27

Bài 1

a) \(x=x^5\)

\(x^5-x=0\)

\(x\left(x^4-1\right)=0\)

\(x=0\) hoặc \(x^4-1=0\)

\(x^4-1=0\)

\(x^4=1\)

\(x=1\)

Vậy x = 0; x = 1

b) \(x^4=x^2\)

\(x^4-x^2=0\)

\(x^2\left(x^2-1\right)=0\)

\(x^2=0\) hoặc \(x^2-1=0\)

*) \(x^2=0\)

\(x=0\)

*) \(x^2-1=0\)

\(x^2=1\)

\(x=1\)

Vậy \(x=0\)\(x=1\)

c) \(\left(x-1\right)^3=x-1\)

\(\left(x-1\right)^3-\left(x-1\right)=0\)

\(\left(x-1\right)\left[\left(x-1\right)^2-1\right]=0\)

\(x-1=0\) hoặc \(\left(x-1\right)^2-1=0\)

*) \(x-1=0\)

\(x=1\)

*) \(\left(x-1\right)^2-1=0\)

\(\left(x-1\right)^2=1\)

\(x-1=1\) hoặc \(x-1=-1\)

**) \(x-1=1\)

\(x=2\)

**) \(x-1=-1\)

\(x=0\)

Vậy \(x=0\)\(x=1\)\(x=2\)

 

Liên Hiệp Cứng
Xem chi tiết
Luân Đào
11 tháng 1 2018 lúc 12:52

a,

xy - 2x + 5y = 12

=> x(y-2) + 5y - 10 = 2

=> x(y-2) + 5(y-2) = 2

=> (x+5)(y-2) = 2

x+5 1 2 -1 -2
y-2 2 1 -2 -1
x -4 -3 -6 -7
y 4 3 0 1

Vậy (x,y) = (-4,4); (-3,3); (-6,0); (-7,1)

b,

xy = x + y

=> xy - x - y = 0

=> x(y-1) - (y-1)= 1

=> (x-1)(y-1)= 1

x-1 1 -1
y-1 1 -1
x 2 0
y 2 0

Vậy (x,y) = (2,2); (0,0)

c,

xy = x-y

=> xy - x + y = 0

=> x(y-1) + (y-1) = -1

=> (x+1)(y-1)= -1

x+1 1 -1
y-2 -1 1
x 0 -2
y 1 3

=> (x,y) = ...

d,

3x+1 = (y+1)2

Ta có:

(y+1)2 chia 3 dư 0,1

Mà 3x+1 chia hết cho 3 với x khác -1

+ Với x = -1

<=> 30 = (y+1)2

<=> (y+1)2 = 1

=> \(\left[{}\begin{matrix}y+1=1\\y+1=-1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}y=0\\y=-2\end{matrix}\right.\)

Ta được hai cặp (x,y) = (-1;0); (-1;-2)

+ Với x khác -1

=> (y+1)2 chia hết cho 3

=> y+1 chia hết cho 3

=> y chia 3 dư 2

Vậy với x khác -1 thì giá trị ương ứng của y sẽ bằng 3k+2

Vậy...............

Bommer
Xem chi tiết
Thanh Nhã Phạm
Xem chi tiết
HT.Phong (9A5)
18 tháng 3 2023 lúc 9:48

a) Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{5}=\dfrac{y}{2}=\dfrac{z}{-3}=\dfrac{x.y.z}{5.2.-3}=\dfrac{240}{-30}=-8\)

\(\Rightarrow\dfrac{x}{5}=-8\Rightarrow x=-8.5=-40\)

\(\Rightarrow\dfrac{y}{2}=-8\Rightarrow y=-8.2=-16\)

\(\Rightarrow\dfrac{z}{-3}=-8\Rightarrow z=-8.-3=24\)

Vậy \(x=--40;y=-16\) và \(z=24\) 

b) Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{2}=\dfrac{x^3-y^3+z^3}{3^3-4^3+2^3}=\dfrac{-29}{-29}=1\)

\(\Rightarrow\dfrac{x}{3}=1\Rightarrow x=3.1=3\)

\(\Rightarrow\dfrac{y}{4}=1\Rightarrow y=1.4=4\)

\(\Rightarrow\dfrac{z}{2}=1\Rightarrow z=1.2=2\)

Vậy \(x=3;y=4\) và \(z=2\) 

Nguyễn Như Ngọc
Xem chi tiết
Nguyễn Lê Phước Thịnh
4 tháng 2 2021 lúc 17:14

a) Ta có: (x+1)(y-2)=-2

nên x+1; y-2 là các ước của -2

Trường hợp 1:

\(\left\{{}\begin{matrix}x+1=-1\\y-2=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=4\end{matrix}\right.\)

Trường hợp 2: 

\(\left\{{}\begin{matrix}x+1=2\\y-2=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)

Trường hợp 3: 

\(\left\{{}\begin{matrix}x+1=-2\\y-2=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=3\end{matrix}\right.\)

Trường hợp 4: 

\(\left\{{}\begin{matrix}x+1=1\\y-2=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)

Vậy: (x,y)\(\in\){(-2;4);(1;1);(-3;3);(0;0)}

b) Ta có: (x+1)(xy-1)=3

nên x+1;xy-1 là các ước của 3

Trường hợp 1: 

\(\left\{{}\begin{matrix}x+1=1\\xy-1=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\-1=3\end{matrix}\right.\Leftrightarrow loại\)

Trường hợp 2: 

\(\left\{{}\begin{matrix}x+1=3\\xy-1=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\2y-1=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\2y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)

Trường hợp 3: 

\(\left\{{}\begin{matrix}x+1=-1\\xy-1=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\-2y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=1\end{matrix}\right.\)

Trường hợp 4: 

\(\left\{{}\begin{matrix}x+1=-3\\xy-1=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-4\\-4y-1=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-4\\-4y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-4\\y=-\dfrac{1}{2}\end{matrix}\right.\left(loại\right)\)

Vậy: \(\left(x,y\right)\in\left\{\left(2;1\right);\left(-2;1\right)\right\}\)

c) Ta có: \(\left(x+y\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+y=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-x\\x=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\)

Vây: (x,y)=(-1;1)

d) Ta có: \(\left|x+y\right|\cdot\left(x-y\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left|x+y\right|=0\\x-y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+y=0\\x=y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2y=0\\x=y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)

Vậy: (x,y)=(0;0)

Phương Thảo Đinh Ngọc
Xem chi tiết
Nguyễn Hoàng Minh
16 tháng 10 2021 lúc 17:37

\(a,\dfrac{12}{5}=\dfrac{x}{1,5}\Rightarrow x=\dfrac{12\cdot1,5}{5}=3,6\\ b,\dfrac{x}{5}=\dfrac{3}{20}\Rightarrow x=\dfrac{5\cdot3}{20}=\dfrac{3}{4}\\ c,\dfrac{4}{x}=\dfrac{10}{9}\Rightarrow x=\dfrac{4\cdot9}{10}=\dfrac{18}{5}\\ d,\Rightarrow\dfrac{x}{15}=\dfrac{60}{x}\Rightarrow x^2=60\cdot15=900\Rightarrow\left[{}\begin{matrix}x=30\\x=-30\end{matrix}\right.\\ 2,\)

a, Áp dụng t/c dtsbn:

\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{6}=\dfrac{x+y-z}{3+5-6}=\dfrac{8}{2}=4\\ \Rightarrow\left\{{}\begin{matrix}x=12\\y=20\\z=24\end{matrix}\right.\)

b, Áp dụng t/c dtsbn:

\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{6}=\dfrac{x-y+z}{3-5+6}=\dfrac{-4}{4}=-1\\ \Rightarrow\left\{{}\begin{matrix}x=-3\\y=-5\\z=-6\end{matrix}\right.\)

c, Áp dụng t/c dtsbn:

\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{6}=\dfrac{2y}{10}=\dfrac{3z}{18}=\dfrac{x-2y+3z}{3-10+18}=\dfrac{-33}{11}=-3\\ \Rightarrow\left\{{}\begin{matrix}x=-9\\y=-15\\z=-18\end{matrix}\right.\)

d, Đặt \(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{6}=k\Rightarrow x=3k;y=5k;z=6k\)

\(x^2-4y^2+2z^2=-475\\ \Rightarrow9k^2-100k^2+72z^2=-475\\ \Rightarrow-19k^2=-475\\ \Rightarrow k^2=25\Rightarrow\left[{}\begin{matrix}k=5\\k=-5\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=15;y=25;z=30\\x=-15;y=-25;z=-30\end{matrix}\right.\)