Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoàng Đức Long
Xem chi tiết
Vũ Thành Nam
14 tháng 1 2018 lúc 17:20

Chọn đáp án D

Nguyễn Quang Duy
Xem chi tiết
Lê Song Phương
20 tháng 11 2021 lúc 7:01

a) Gọi đường thẳng đi qua M(3;4) và song song với \(\left(d\right):y=2x+6\)là \(\left(d'\right):y=a'x+b'\)

Vì \(\left(d'\right)//\left(d\right)\Rightarrow a'=2\)

Vậy phương trình đường thẳng (d') có dạng \(\left(d'\right):y=2x+b'\)

Mặt khác (d') đi qua M(3;4) nên điểm M(3;4) thuộc \(\left(d'\right):y=2x+b'\)

Thay \(x=3;y=4\)vào hàm số \(y=2x+b'\)ta có:

\(4=2.3+b'\Leftrightarrow b'=-2\)

Vậy phương trình đường thẳng đi qua M(3;4) và song song với \(\left(d\right):y=2x+6\)là \(\left(d'\right):y=2x-2\)

b) Gọi OH là khoảng cách từ O đến (d). Gọi giao điểm của (d):y = 2x + 6 với hai trục Ox, Oy lần lượt là A(xA;0), B(0;yB).

Thay x = xA; y = 0 vào hàm số y = 2x + 6, ta có: \(0=2x_A+6\Leftrightarrow x_A=-3\)

Thay x = 0; y = yB vào hàm số y = 2x + 6, ta có: \(y_B=2.0+6=6\)

Vì \(OA=\left|x_A\right|;OB=\left|y_B\right|\)\(\Rightarrow OA=\left|-3\right|=3;OB=\left|6\right|=6\)

\(\Delta OAB\)vuông tại O, đường cao OH \(\Rightarrow\frac{1}{OH^2}=\frac{1}{OA^2}+\frac{1}{OB^2}\left(htl\right)\)

Rồi bạn thay OA, OB vào và dễ dàng tính được OH

Khách vãng lai đã xóa
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
19 tháng 1 2019 lúc 4:26

 và tứ diện O.ABC vuông tại O nên:

 

Chọn đáp án B. Mẹo TN: Vì tính đối xứng cho 

 

Chọn đáp án B.

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
29 tháng 9 2023 lúc 23:27

a)  Từ phương trình tổng quát của đường thẳng, ta lấy được một vecto pháp tuyến là: \(\overrightarrow n  = \left( {1; - 2} \right)\) nên ta chọn vecto chỉ phương của đường thẳng d là: \(\overrightarrow u  = \left( {2;1} \right)\).

 Chọn điểm \(A\left( {1; - 2} \right) \in d\).Vậy phương trình tham số của đường thẳng d là: \(\left\{ \begin{array}{l}x = 1 + 2t\\y =  - 2 + t\end{array} \right.\) (t là tham số)

b)  Do điểm M thuộc d nên ta có: \(M\left( {1 + 2m; - 2 + m} \right);m \in \mathbb{R}\).

 Ta có: \(OM = 5 \Leftrightarrow \sqrt {{{\left( {1 + 2m} \right)}^2} + {{\left( { - 2 + m} \right)}^2}}  = 5 \Leftrightarrow {m^2} = 4 \Leftrightarrow m =  \pm 2\)

 Với \(m = 2 \Rightarrow M\left( {5;0} \right)\)

 Với \(m =  - 2 \Rightarrow M\left( { - 3; - 4} \right)\)

 Vậy ta có 2 điểm M thỏa mãn điều kiện đề bài.

c)  Do điểm N thuộc d nên ta có: \(N\left( {1 + 2n; - 2 + n} \right)\)

 Khoảng cách từ N đến trục hoành bằng giá trị tuyệt đối của tung độ điểm N. Do đó, khoảng cách tư N đến trục hoành bằng 3 khi và chỉ khi: \(\left| { - 2 + n} \right| = 3 \Leftrightarrow \left[ \begin{array}{l}n = 5\\n =  - 1\end{array} \right.\)

 Với \(n = 5 \Rightarrow N\left( {11;3} \right)\)

 Với \(n =  - 1 \Rightarrow N\left( { - 1; - 3} \right)\)

 Vậy có 2 điểm N thỏa mãn bài toán

qweeee123123
Xem chi tiết
Hàn Linh
Xem chi tiết
Nhat Lee Vo
5 tháng 12 2016 lúc 22:46

y = kx +3 <=>kx+3-y=0 => x=0,y=3

đường thẳng d luôn đi qua một điểm cố định(0;3)

b)khoảgn cách từ gốc toạ độ O tới đường thẳng d bằng căn 2 của x^2+y^2

=>x^2+y^2=4  (1)

Thế y = kx +3, \(x^2+\left(kx+3\right)^2=4\)

\(x^2\left(1+k^2\right)+6kx+5=0\)có nghiệm khi k>=\(\frac{\sqrt{5}}{3}\)

c)

Hàn Linh
6 tháng 12 2016 lúc 18:03

phần c ?

Tăng Thành
Xem chi tiết
trần hiểu băng
21 tháng 8 2017 lúc 16:00

x=30+30t

Nguyễn Thị Thuỳ
Xem chi tiết
Nguyễn Việt Lâm
29 tháng 4 2021 lúc 23:23

Gọi A và B lần lượt là giao điểm của d với Ox và Oy

\(\Rightarrow A\left(-2;0\right)\) và \(B\left(0;2\right)\) \(\Rightarrow\left\{{}\begin{matrix}OA=\left|x_A\right|=2\\OB=\left|y_B\right|=2\end{matrix}\right.\)

\(\Rightarrow\Delta OAB\) vuông cân tại O

Gọi H là hình chiếu vuông góc của O lên d \(\Rightarrow OH=d\left(O;d\right)\)

Mặt khác do OAB vuông cân \(\Rightarrow\) OH là đường cao đồng thời là trung tuyến

\(\Rightarrow OH=\dfrac{1}{2}BC=\dfrac{1}{2}\sqrt{OA^2+OB^2}=\sqrt{2}\)

Trọng Chí
17 tháng 5 2021 lúc 8:42

cho đường thẳng (d) : y=X+2 khoảng cách từ gốc tọa độ đến đường thẳng (d) là

phạm kim liên
Xem chi tiết
Nguyễn Hoàng Minh
20 tháng 9 2021 lúc 11:01

\(a,\) Pt hoành độ giao điểm 

\(x=0\\ \Leftrightarrow y=-2\cdot0+3=3\\ \Leftrightarrow A\left(0;3\right)\)

Pt tung độ giao điểm

\(y=0\\ \Leftrightarrow0=-2x+3\Leftrightarrow x=\dfrac{3}{2}\\ \Leftrightarrow B\left(\dfrac{3}{2};0\right)\)