Tìm x thuộc Z biết:
a) \(C=\frac{3x-2}{x+3}\)
b) \(D=\frac{x^2-2x+4}{x+1}\)
Cho A=\(\left(\frac{3x}{x-2}-\frac{2x^2-5}{x^2-4}-\frac{x-1}{x+2}\right):\frac{3}{x+2}\)
a. Rút gọn A
b. Tính A biết \(x^2-2x=0\)
c. Tìm x thuộc Z để A thuộc Z
Cho A=\(\left(\frac{3x}{x-2}-\frac{2x^2-5}{x^2-4}-\frac{x-1}{x+2}\right):\frac{3}{x+2}\)
a. Rút gọn A
b. Tính A biết \(x^2-2x=0\)
c. Tìm x thuộc Z để A thuộc Z
\(A=\left(\frac{x}{x+3}+\frac{2x}{x-3}-\frac{3x^2+12}{x^2-9}\right):\frac{3}{x-3}\)
a, tìm điều kiện xác ddingj A, rút gọn A
b, Tính A khi x=-4
c, tìm x thuộc z để A thuộc z
a, ĐKXĐ: \(x\ne\pm3\)
\(A=\frac{x\left(x-3\right)+2x\left(x+3\right)-3x^2-12}{\left(x-3\right)\left(x+3\right)}.\frac{x-3}{3}\)
\(=\frac{3x-12}{\left(x-3\right)\left(x+3\right)}.\frac{x-3}{3}=\frac{3x-12}{3x+9}\)
b, \(x=-4\Rightarrow A=\frac{3.\left(-4\right)-12}{3.\left(-4\right)+9}=8\)
c, \(A\in Z\Rightarrow3x-12⋮\left(3x+9\right)\Rightarrow3x+9-21⋮\left(3x+9\right)\Rightarrow21⋮\left(3x+9\right)\)
\(\Rightarrow3x+9\inƯ\left(21\right)=\left\{\pm1;\pm3;\pm7;\pm21\right\}\)
Mà \(3x+9⋮3\Rightarrow3x+9\in\left\{-21;-3;3;21\right\}\Rightarrow x\in\left\{-10;-4;-2;4\right\}\) (thỏa mãn điều kiện)
a, ĐỂ A xác định :
\(\Rightarrow\hept{\begin{cases}x+3\ne0\\x-3\ne0\\x^2-9\ne0\end{cases}}\Rightarrow x\ne\pm3.\)
\(A=\left(\frac{x}{x+3}+\frac{2x}{x-3}-\frac{3x^2+12}{\left(x+3\right)\left(x-3\right)}\right):\frac{3}{x-3}\)
\(A=\frac{x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}+\frac{2x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-\frac{3x^2+12}{\left(x-3\right)\left(x+3\right)}:\frac{3}{x-3}\)
\(A=\frac{x^2-3x+2x^2+6x-3x^2+12}{\left(x-3\right)\left(x+3\right)}.\frac{x-3}{3}\)
\(A=\frac{3x+12}{\left(x-3\right)\left(x+3\right)}.\frac{x-3}{3}\)
\(A=\frac{x-4}{x+3}\)
b
a) \(A=\left(\frac{x}{x+3}+\frac{2x}{x-3}-\frac{3x^2+12}{x^2-9}\right):\frac{3}{x-3}\)
\(A=\left[\frac{x}{x+3}+\frac{2x}{x-3}-\frac{3x^2+12}{\left(x-3\right)\left(x+3\right)}\right]:\frac{3}{x-3}\)
A xác định \(\Leftrightarrow\hept{\begin{cases}x+3\ne0\\x-3\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne-3\\x\ne3\end{cases}}}\)
b) \(A=\left[\frac{x}{x+3}+\frac{2x}{x-3}-\frac{3x^2+12}{\left(x-3\right)\left(x+3\right)}\right]:\frac{3}{x-3}\)
\(A=\left[\frac{x\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}+\frac{2x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-\frac{3x^2+12}{\left(x-3\right)\left(x+3\right)}\right]:\frac{3}{x-3}\)
\(A=\left[\frac{x^2-3x+2x^2+6x-3x^2-12}{\left(x+3\right)\left(x-3\right)}+\right]:\frac{3}{x-3}\)
\(A=\left[\frac{3x-12}{\left(x+3\right)\left(x-3\right)}\right].\frac{x-3}{3}\)
\(A=\left[\frac{3\left(x-4\right)}{\left(x+3\right)\left(x-3\right)}\right].\frac{x-3}{3}\)
\(A=\frac{x-4}{x+3}\)
Với \(x=-4\)
\(\Rightarrow A=\frac{-4-4}{-4+3}=-\frac{8}{-1}=8\)
Vậy \(A=8\)tại \(x=-4\)
c) \(A=\frac{x-4}{x+3}=\frac{x+3-7}{x+3}=1-\frac{7}{x+3}\)
Có \(1\in Z\)
Để \(A\in Z\Rightarrow\frac{7}{x+3}\in Z\)
Có: \(x\in Z\Rightarrow x+3\in Z\Rightarrow\frac{7}{x+3}\in Z\Leftrightarrow\left(x+3\right)\in\text{Ư}\left(7\right)=\left\{\pm1;\pm7\right\}\)
b tự lập bảng nhé~
3. Xác định x thỏa mãn:
a) (x-(3/5).(x+2/7)>0
b) (x+(3/2).(x-(3/2)<0
c) (2x-(1/2).(3x-(1/3)<0
d) (5x-(1/2) : ( 1,25 - 3x)
4. Tìm x thuộc Z để : \(\frac{x-5}{9-x}\)là số hữu tỉ dương.
5.Tìm các số nguyên x, y biết :
a) \(\frac{1}{x}-\frac{y}{6}=\frac{1}{3}\)
b) \(\frac{x}{2}+\frac{3}{y}=\frac{5}{4}\)
6. Tìm x thuộc Z để các số sau là số nguyên và tính giá trị đó:
a) A=\(\frac{3x-2}{x+3}\)
b)B=\(\frac{3x+9}{x-4}\)
c) C=\(\frac{6x+5}{2x-1}\)
7. Tìm x biết:
a) \(\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}=\frac{x+1}{13}+\frac{x+1}{14}\)
b) \(\frac{x+4}{2000}+\frac{x+3}{2001}=\frac{x+2}{2002}+\frac{x+1}{2003}\)
Bạn nào onl giải hộ mình bài nào cũng được miễn là đúng. Mình cần gấp.
Bài 1: Phân tích đa thức sau :
a)2x(xy+y^2-3)
b)(x-y)(2x+y)
c)(x-2y)^2
d)(2x-y)(y+2x)
bài 2: Phân tích các đơn thức thành nhân tử
a)3x^2-3xy
b)x^2-4y^2
c)3x-3y+xy-y^2
d)x^2-1+2y-y^2
Bài 3: Tìm x biết:
a)3x^2-6x=0
b)Tìm x,y thuộc z biết: x^2+4y^2-2xy=4
Bài 2:
a: \(3x^2-3xy=3x\left(x-y\right)\)
b: \(x^2-4y^2=\left(x-2y\right)\left(x+2y\right)\)
c: \(3x-3y+xy-y^2=\left(x-y\right)\left(3+y\right)\)
d: \(x^2-y^2+2y-1=\left(x-y+1\right)\left(x+y-1\right)\)
Tìm x thuộc Z sao cho có giá trị nguyên
\(A=\frac{x^2-10x+36}{x-5}\)
\(B=\frac{2x^2+3x+3}{2x-1}\)
\(C=\frac{4x^2-6x-7}{x-3}\)
\(D=\frac{2x^2+x+6}{x+3}\)
\(E=\frac{3x^3+10x-5}{3x+1}\)
\(A=\frac{x^2-10x+36}{x-5}=\frac{x^2-10x+25+9}{x-5}\) \(=\frac{\left(x-5\right)^2+9}{x-5}=x-5+\frac{9}{x-5}\)
để \(A\in Z\)
<=> \(\frac{9}{x-5}\in Z\)mà \(x\in Z\)
=> \(x-5\inƯ\left(9\right)\)
=> \(x-5\in\left(1;-1;3;-3;9;-9\right)\)
=> \(x\in\left(6;4;8;2;14;-4\right)\)
học tốt
Giúp mình với ạ!
cho biểu thức C = ( \(\frac{2x}{x-3}\)+\(\frac{x}{x+3}\)- \(\frac{x^2+3x+1}{9-x^2}\)) : ( \(\frac{2x+2}{x+3}\)- 1)
a) Rút gọn biểu thức
b) Tìm x để C<1
c) Tìm x thuộc Z để C thuộc Z
tìm x thuộc z để biểu thức nguyên
a) \(\frac{2x+3}{x-1}\)
b)\(\frac{3x+2}{2x+1}\)
c)\(\frac{x^2+4x+7}{x+4}\)
a) Để biểu thức nguyên
\(\Leftrightarrow2x+3⋮x-1\)
\(\Leftrightarrow2.\left(x-1\right)+5⋮x-1\)
Mà \(2.\left(x-1\right)⋮x-1\)
\(\Rightarrow5⋮x-1\)
Tự tìm x
b) Để biểu thức nguyên
\(\Leftrightarrow3x+2⋮2x+1\)
\(\Leftrightarrow2.\left(3x+2\right)⋮2x+1\)
\(\Leftrightarrow6x+4⋮2x+1\)
\(\Leftrightarrow3.\left(2x+1\right)+1⋮2x+1\)
Mà \(3.\left(2x+1\right)⋮2x+1\)
\(\Rightarrow1⋮2x+1\)
Tìm nốt x
Tìm x, biết:
a)\(\frac{2}{9}:x + \frac{5}{6} = 0,5;\)
b)\(\frac{3}{4} - \left( {x - \frac{2}{3}} \right) = 1\frac{1}{3};\)
c)\(1\frac{1}{4}:\left( {x - \frac{2}{3}} \right) = 0,75;\)
d)\(\left( { - \frac{5}{6}x + \frac{5}{4}} \right):\frac{3}{2} = \frac{4}{3}\).
a)
\(\begin{array}{l}\frac{2}{9}:x + \frac{5}{6} = 0,5\\\frac{2}{9}:x = \frac{1}{2} - \frac{5}{6}\\\frac{2}{9}:x = \frac{3}{6} - \frac{5}{6}\\\frac{2}{9}:x = \frac{{ - 2}}{6}\\x = \frac{2}{9}:\frac{{ - 2}}{6}\\x = \frac{2}{9}.\frac{{ - 6}}{2}\\x = \frac{{ - 2}}{3}\end{array}\)
Vậy \(x = \frac{{ - 2}}{3}\).
b)
\(\begin{array}{l}\frac{3}{4} - \left( {x - \frac{2}{3}} \right) = 1\frac{1}{3}\\x - \frac{2}{3} = \frac{3}{4} - 1\frac{1}{3}\\x - \frac{2}{3} = \frac{3}{4} - \frac{4}{3}\\x - \frac{2}{3} = \frac{9}{{12}} - \frac{{16}}{{12}}\\x - \frac{2}{3} = \frac{{ - 7}}{{12}}\\x = \frac{{ - 7}}{{12}} + \frac{2}{3}\\x = \frac{{ - 7}}{{12}} + \frac{8}{{12}}\\x = \frac{1}{12}\end{array}\)
Vậy\(x = \frac{1}{12}\).
c)
\(\begin{array}{l}1\frac{1}{4}:\left( {x - \frac{2}{3}} \right) = 0,75\\\frac{5}{4}:\left( {x - \frac{2}{3}} \right) = \frac{3}{4}\\x - \frac{2}{3} = \frac{5}{4}:\frac{3}{4}\\x - \frac{2}{3} = \frac{5}{4}.\frac{4}{3}\\x - \frac{2}{3} = \frac{5}{3}\\x = \frac{5}{3} + \frac{2}{3}\\x = \frac{7}{3}\end{array}\)
Vậy \(x = \frac{7}{3}\).
d)
\(\begin{array}{l}\left( { - \frac{5}{6}x + \frac{5}{4}} \right):\frac{3}{2} = \frac{4}{3}\\ - \frac{5}{6}x + \frac{5}{4} = \frac{4}{3}.\frac{3}{2}\\ - \frac{5}{6}x + \frac{5}{4} = 2\\ - \frac{5}{6}x = 2 - \frac{5}{4}\\ - \frac{5}{6}x = \frac{8}{4} - \frac{5}{4}\\ - \frac{5}{6}x = \frac{3}{4}\\x = \frac{3}{4}:\left( { - \frac{5}{6}} \right)\\x = \frac{3}{4}.\frac{{ - 6}}{5}\\x = \frac{{ - 9}}{{10}}\end{array}\)
Vậy \(x = \frac{{ - 9}}{{10}}\).