\(S=2+2^2+2^3+...+2^{60}\)
CMR:S không phải số chính phương
Cho : S=30+31+32+....+330
tìm số tận cùng của S
CMR:S không phải là số chính phương
\(S=2+2^2+2^3+2^4+...+2^{60}\)
CMR: S không phải số chính phương
\(S=2^1+2^2+2^3+...+2^{60}\)
\(2\cdot S=2^2+2^3+2^4+...+2^{61}\)
\(S=2^{61}-2\)
\(\Rightarrow S⋮2\)
Nếu S chia hết cho 2 thì \(S⋮2^2\) (nếu số chính phương chia hết cho số đó thì số chính phương cũng chia hết cho bình phương của số đó)
Ta có:
\(2^{61}=2^2\cdot2^{59}=4\cdot2^{59}⋮4\)
Mà \(2⋮4̸\) nên \(S=2^{61}-2\)\(⋮̸\)\(4\)
Vậy S không phải là số chính phương.
CMR :
a,Tổng 3 số chính phương không phải là một số chính phương
a,Tổng S=12+22+32+....+302 không phải là số chính phương
CMR :
a,Tổng 3 số chính phương không phải là một số chính phương
a,Tổng S=12+22+32+....+302 không phải là số chính phương
CMR :
a,Tổng 3 số chính phương không phải là một số chính phương
a,Tổng S=12+22+32+....+302 không phải là số chính phương
CMR :
a,Tổng 3 số chính phương không phải là một số chính phương
a,Tổng S=12+22+32+....+302 không phải là số chính phương
chứng minh rằng
a, tổng của ba số chính phương liên tiếp không phải là một số chính phương
b, tổng S= 12 +22+32+...+302 không phải là số chính phương
CMR:
S=(x+1)(x+2)(x+3)(x+4)+1 luôn luôn là 1 số chính phương ∀ x ∈ Z
\(S=\left(x+1\right)\left(x+4\right)\left(x+2\right)\left(x+3\right)+1\)
\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)+1\)
\(=\left(x^2+5x+4\right)\left(x^2+5x+4+2\right)+1\)
\(=\left(x^2+5x+4\right)^2+2\left(x^2+5x+4\right)+1\)
\(=\left(x^2+5x+4+1\right)^2\)
\(=\left(x^2+5x+5\right)^2\) là SCP (đpcm)
\(S=\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)+1=\left(x+1\right)\left(x+4\right)\left(x+2\right)\left(x+3\right)+1\)
\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)+1\)
Đặt \(t=x^2+5x+5\Rightarrow\) pt trở thành \(\left(t-1\right)\left(t+1\right)+1=t^2-1+1=t^2\)
\(=\left(x^2+5x+5\right)^2\)
Vì \(x\in Z\Rightarrow x^2+5x+5\in Z\Rightarrow\left(x^2+5x+5\right)^2\) là số chính phương
Cho tổng S=1+3^1+3^2+3^3+....+3^30. S là số chính phương hay không phải là số chính phương?