Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Mai Tuấn Quang
Xem chi tiết
Nguyễn Nhân Dương
Xem chi tiết
Vũ Duy Khánh
26 tháng 9 2023 lúc 18:45

Toán lớp 3 

Nguyễn Đăng Nhân
26 tháng 9 2023 lúc 19:29

\(S=2^1+2^2+2^3+...+2^{60}\)

\(2\cdot S=2^2+2^3+2^4+...+2^{61}\)

\(S=2^{61}-2\)

\(\Rightarrow S⋮2\)

Nếu S chia hết cho 2 thì \(S⋮2^2\) (nếu số chính phương chia hết cho số đó thì số chính phương cũng chia hết cho bình phương của số đó)

Ta có:

\(2^{61}=2^2\cdot2^{59}=4\cdot2^{59}⋮4\)

Mà \(2⋮4̸\) nên \(S=2^{61}-2\)\(⋮̸\)\(4\)

Vậy S không phải là số chính phương.

 

yurei ninja darth vader
Xem chi tiết
yurei ninja darth vader
Xem chi tiết
yurei ninja darth vader
Xem chi tiết
yurei ninja darth vader
Xem chi tiết
trang eva
Xem chi tiết
ILoveMath
Xem chi tiết
Dưa Hấu
11 tháng 7 2021 lúc 16:22

undefined

Nguyễn Việt Lâm
11 tháng 7 2021 lúc 16:23

\(S=\left(x+1\right)\left(x+4\right)\left(x+2\right)\left(x+3\right)+1\)

\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)+1\)

\(=\left(x^2+5x+4\right)\left(x^2+5x+4+2\right)+1\)

\(=\left(x^2+5x+4\right)^2+2\left(x^2+5x+4\right)+1\)

\(=\left(x^2+5x+4+1\right)^2\)

\(=\left(x^2+5x+5\right)^2\) là SCP (đpcm)

An Thy
11 tháng 7 2021 lúc 16:23

\(S=\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)+1=\left(x+1\right)\left(x+4\right)\left(x+2\right)\left(x+3\right)+1\)

\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)+1\)

Đặt \(t=x^2+5x+5\Rightarrow\) pt trở thành \(\left(t-1\right)\left(t+1\right)+1=t^2-1+1=t^2\)

\(=\left(x^2+5x+5\right)^2\)

Vì \(x\in Z\Rightarrow x^2+5x+5\in Z\Rightarrow\left(x^2+5x+5\right)^2\) là số chính phương

sakura
Xem chi tiết