tìm x biết
\(\sqrt{16-32x}-\sqrt{12x}=\sqrt{3x}+\sqrt{9-18x}\)
Tìm x khi \(\sqrt{16-32x}-\sqrt{12x}=\sqrt{3x}+\sqrt{9-18x}\)
Tìm x khi \(\sqrt{16-32x}-\sqrt{12x}=\sqrt{3x}+\sqrt{9-18x}\)
\(\sqrt{16.\left(1-2x\right)}\) -\(\sqrt{4.3}\) =\(\sqrt{3x}\) +\(\sqrt{9.\left(1-2x\right)}\)
(=)4\(\sqrt{1-2x}\) -2\(\sqrt{3x}\) =\(\sqrt{3x}\) +3\(\sqrt{1-2x}\)
(=)\(\sqrt{1-2x}\) -3\(\sqrt{3x}\) =0
(=)1-2x=3\(\sqrt{3x}\) (=)1-2x=9.3x(=)1-2x=27x(=)29x=1(=)x=\(\frac{1}{29}\)
tìm x:
\sqrt(8x-4)-2\sqrt(18x-9)+2\sqrt(32x-16)=12
`\sqrt{8x-4}-2\sqrt{18x-9}+2\sqrt{32x-16}=12` `ĐK: x >= 1/2`
`<=>2\sqrt{2x-1}-6\sqrt{2x-1}+8\sqrt{2x-1}=12`
`<=>4\sqrt{2x-1}=12`
`<=>\sqrt{2x-1}=3`
`<=>2x-1=9`
`<=>x=5` (t/m)
Vậy `S={5}`.
\(\Leftrightarrow2\sqrt{2x-1}-2\cdot3\sqrt{2x-1}+2\cdot4\sqrt{2x-1}=12\)
=>\(4\sqrt{2x-1}=12\)
=>\(\sqrt{2x-1}=3\)
=>2x-1=9
=>2x=10
=>x=5
\(\sqrt{8x-4}-2\sqrt{18x-9}+2\sqrt{32x-16}=12\) (ĐK: \(x\ge\dfrac{1}{2}\))
\(\Leftrightarrow2\sqrt{2x-1}-2\cdot3\sqrt{2x-1}+2\cdot4\sqrt{2x-1}=12\)
\(\Leftrightarrow2\sqrt{2x-1}-6\sqrt{2x-1}+8\sqrt{2x-1}=12\)
\(\Leftrightarrow\left(2-6+8\right)\sqrt{2x-1}=12\)
\(\Leftrightarrow4\sqrt{2x-1}=12\)
\(\Leftrightarrow\sqrt{2x-1}=12:4\)
\(\Leftrightarrow\sqrt{2x-1}=3\)
\(\Leftrightarrow2x-1=9\)
\(\Leftrightarrow2x=9+1\)
\(\Leftrightarrow2x=10\)
\(\Leftrightarrow x=5\left(tm\right)\)
Vậy \(x=5\)
Tìm x, biết:
a) \(\sqrt{x-2}=\sqrt{4-x}\)
b)\(\sqrt{x^2-8x+6}=x+2\)
c)\(\sqrt{2x-1}+5=\sqrt{8x-4}\)
d)\(\sqrt{16-32x}-\sqrt{12x}=\sqrt{3x}+\sqrt{9-18x}\)
e)\(\sqrt{x^2-9}-\sqrt{4x-12}=0\)
ai trả lời dùm em cái ak. E cảm ơn nhiều
a.\(\sqrt{x-2}=\sqrt{4-x}\)
đk: \(\left\{{}\begin{matrix}x-2\ge0\\4-x\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\x\le4\end{matrix}\right.\Leftrightarrow2\le x\le4\)
pt đã cho tương đương với
\(x-2=4-x\)
\(\Leftrightarrow2x=6\Rightarrow x=3\left(TM\right)\)
b.\(\sqrt{x^2-8x+6}=x+2\)
đk: \(x+2\ge0\Rightarrow x\ge-2\)
pt đã cho tương đương với
\(x^2-8x+6=\left(x+2\right)^2\)
\(\Leftrightarrow x^2-8x+6=x^2+4x+4\)
\(\Leftrightarrow-12x=-2\Rightarrow x=\frac{1}{6}\left(TM\right)\)
c.\(\sqrt{2x-1}+5=\sqrt{8x-4}\)
\(\Leftrightarrow\sqrt{2x-1}+5=\sqrt{4\left(2x-1\right)}\)
\(\Leftrightarrow\sqrt{2x-1}+5=2\sqrt{2x-1}\)
\(\Leftrightarrow\sqrt{2x-1}=5\)
đk: \(2x-1\ge0\Leftrightarrow x\ge\frac{1}{2}\)
pt tương đương: \(2x-1=25\)
\(\Leftrightarrow2x=26\Rightarrow x=13\left(TM\right)\)
d.\(\sqrt{16-32x}-\sqrt{12x}=\sqrt{3x}+\sqrt{9-18x}\)
\(\Leftrightarrow\sqrt{16\left(1-2x\right)}-\sqrt{4.3x}=\sqrt{3x}+\sqrt{9\left(1-2x\right)}\)
\(\Leftrightarrow4\sqrt{1-2x}-2\sqrt{3x}+3\sqrt{1-2x}\)
\(\Leftrightarrow\sqrt{1-2x}=3\sqrt{3x}\)
đk: \(\left\{{}\begin{matrix}1-2x\ge0\\3x\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le\frac{1}{2}\\x\ge0\end{matrix}\right.\Leftrightarrow0\le x\le\frac{1}{2}\)
pt tương đương: \(1-2x=9.3x\)
\(\Leftrightarrow29x=1\Rightarrow x=\frac{1}{29}\left(TM\right)\)
e. \(\sqrt{x^2-9}-\sqrt{4x-12}=0\)
đk: \(\left\{{}\begin{matrix}\left(x-3\right)\left(x+3\right)\ge0\\4x-12\ge0\end{matrix}\right.\Leftrightarrow x\ge3\)
pt đã cho tương đương với
\(\sqrt{\left(x-3\right)\left(x+3\right)}-\sqrt{4\left(x-3\right)}=0\)
\(\Leftrightarrow\sqrt{x-3}.\sqrt{x+3}-2\sqrt{x-3}=0\)
\(\Leftrightarrow\sqrt{x-3}.\left(\sqrt{x+3}-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-3}=0\\\sqrt{x+3}-2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\Rightarrow x=3\left(TM\right)\\\sqrt{x+3}=2\Leftrightarrow x+3=4\Rightarrow x=1\left(KTM\right)\end{matrix}\right.\)
1) Tìm x biết
a) \(\sqrt{4x-20}+\sqrt{x-5}-\frac{1}{3}=\sqrt{9x-45}=4\)
b) \(\sqrt{16x-32x}-\sqrt{12x}=\sqrt{3x}+\sqrt{9-18x}\)
c) \(\sqrt{4x-20}-3\sqrt{\frac{x-5}{9}}=\sqrt{1-x}\)
\(dat:\sqrt{x-5}=a\Rightarrow\sqrt{4\left(x-5\right)}+\sqrt{x-5}-\frac{1}{3}=\sqrt{9\left(x-5\right)}\Rightarrow\sqrt{4}.a+a-\frac{1}{3}=\sqrt{9}.a\Rightarrow3a-\frac{1}{3}=3a\left(voli\right)\Rightarrow vonghiem\)
câu a chắc đề như zầy pk bạn???
\(\sqrt{4x-20}+\sqrt{x-5}-\frac{1}{3}+\sqrt{9x-45}=4\)
\(pt\Leftrightarrow2\sqrt{x-5}+\sqrt{x-5}+3\sqrt{x-5}=\frac{13}{3}\)
\(\Leftrightarrow6\sqrt{x-5}=\frac{13}{3}\Rightarrow\sqrt{x-5}=\frac{13}{18}\Leftrightarrow x=\frac{1789}{324}\)
b)đề như này đúng ko bạn??
\(\sqrt{16-32x}-\sqrt{12x}=\sqrt{3x}+\sqrt{9-18x}\)
\(\Leftrightarrow4\sqrt{1-2x}-2\sqrt{3x}=\sqrt{3x}+3\sqrt{1-2x}\)
\(\Leftrightarrow\sqrt{1-2x}-3\sqrt{3x}=0\Leftrightarrow\sqrt{1-2x}=3\sqrt{3x}\)
\(\Leftrightarrow1-2x=27x\Leftrightarrow x=\frac{1}{29}\)
câu c\(\sqrt{4x-20}-3\sqrt{\frac{x-5}{9}}=\sqrt{1-x}\)
Xét điều kiện \(\left\{{}\begin{matrix}x\le1\\x\ge5\end{matrix}\right.\)không tồn tại số nào nằm trong khoảng này
Vậy pt trên vô nghiệm
Giúp mình nhé
Bài: Giải pt:
a) \(\sqrt{X^2-9}-\sqrt{4x-12}=0\)
b) \(\sqrt{1-x}+\sqrt{x}=1\)
c) \(\sqrt{x+3}+\sqrt{x+8}=5\)
d) \(\sqrt{16-32x}-\sqrt{12x}=\sqrt{3x}+\sqrt{9-18x}\)
a) \(\sqrt{x^2-9}-\sqrt{4x-12}=0\) ĐK: \(x\ge3\)
\(\Leftrightarrow\sqrt{\left(x-3\right)\left(x+3\right)}-2\sqrt{x-3}=0\)
\(\Leftrightarrow\sqrt{x-3}\left(\sqrt{x+3}-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-3}=0\\\sqrt{x+3}-2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\)
Vậy x = 3
b) \(\sqrt{1-x}+\sqrt{x}=1\) ĐK: \(0\le x\le1\)
\(\Leftrightarrow1-x+x+2\sqrt{x\left(1-x\right)}=1\)
\(\Leftrightarrow x\left(1-x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\) (Nhận)
c) \(\sqrt{x+3}+\sqrt{x+8}=5\) ĐK: \(x\ge-3\)
Đặt \(\left\{{}\begin{matrix}a=\sqrt{x+3}\ge0\\b=\sqrt{x+8}\ge0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a+b=5\\b^2-a^2=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a+b=5\\b-a=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=3\end{matrix}\right.\)
\(\Leftrightarrow x=1\) (Nhận)
d) \(\sqrt{16-32x}-\sqrt{12x}=\sqrt{3x}+\sqrt{9-18x}\) ĐK: \(-\dfrac{1}{2}\le x\le0\)
\(\Leftrightarrow4\sqrt{1-2x}-2\sqrt{3x}=\sqrt{3x}+3\sqrt{1-2x}\)
\(\Leftrightarrow\sqrt{1-2x}=3\sqrt{3x}\)
\(\Leftrightarrow1-2x=27x\)
\(\Leftrightarrow x=\dfrac{1}{29}\) (Nhận)
d) \(\sqrt{x^2-12x+36}-x=3\)
e) \(\sqrt{x^2-4x+5}-1=x\)
f) \(\sqrt{x^2-6x+9}+x=3\)
h) \(\sqrt{18x}+\sqrt{32x}-14=0\)
k) \(\sqrt{6x-3}+2=\sqrt{3}\)
h: \(\sqrt{18x}+\sqrt{32x}-14=0\)
\(\Leftrightarrow7\sqrt{2x}=14\)
hay x=2
a) 2\sqrt(32x + 16) - 3\sqrt(18x + 9) = \sqrt(8x + 4) - 6
ĐKXĐ: x>=-1/2
\(2\sqrt{32x+16}-3\sqrt{18x+9}=\sqrt{8x+4}-6\)
=>\(2\cdot4\sqrt{2x+1}-3\cdot3\sqrt{2x+1}-2\sqrt{2x+1}=-6\)
=>\(8\sqrt{2x+1}-9\sqrt{2x+1}-2\sqrt{2x+1}=-6\)
=>\(-3\sqrt{2x+1}=-6\)
=>\(\sqrt{2x+1}=2\)
=>2x+1=4
=>2x=3
=>\(x=\dfrac{3}{2}\left(nhận\right)\)
giải các phương trình sau:
\(1,\sqrt{18x}-6\sqrt{\dfrac{2x}{9}}=3-\sqrt{\dfrac{x}{2}}\)
\(2,\sqrt{3x}-2\sqrt{12x}+\dfrac{1}{3}\sqrt{27x}=-4\)
3, \(3\sqrt{2x}+5\sqrt{8x}-20-\sqrt{18}=0\)
\(4,\sqrt{16x+16}-\sqrt{9x+9}=1\)
\(5,\sqrt{4\left(1-3x\right)}+\sqrt{9\left(1-3x\right)}=10\)
\(6,\dfrac{2}{3}\sqrt{x-3}+\dfrac{1}{6}\sqrt{x-3}-\sqrt{x-3}=\dfrac{-2}{3}\)
2: ĐKXĐ: x>=0
\(\sqrt{3x}-2\sqrt{12x}+\dfrac{1}{3}\cdot\sqrt{27x}=-4\)
=>\(\sqrt{3x}-2\cdot2\sqrt{3x}+\dfrac{1}{3}\cdot3\sqrt{3x}=-4\)
=>\(\sqrt{3x}-4\sqrt{3x}+\sqrt{3x}=-4\)
=>\(-2\sqrt{3x}=-4\)
=>\(\sqrt{3x}=2\)
=>3x=4
=>\(x=\dfrac{4}{3}\left(nhận\right)\)
3:
ĐKXĐ: x>=0
\(3\sqrt{2x}+5\sqrt{8x}-20-\sqrt{18}=0\)
=>\(3\sqrt{2x}+5\cdot2\sqrt{2x}-20-3\sqrt{2}=0\)
=>\(13\sqrt{2x}=20+3\sqrt{2}\)
=>\(\sqrt{2x}=\dfrac{20+3\sqrt{2}}{13}\)
=>\(2x=\dfrac{418+120\sqrt{2}}{169}\)
=>\(x=\dfrac{209+60\sqrt{2}}{169}\left(nhận\right)\)
4: ĐKXĐ: x>=-1
\(\sqrt{16x+16}-\sqrt{9x+9}=1\)
=>\(4\sqrt{x+1}-3\sqrt{x+1}=1\)
=>\(\sqrt{x+1}=1\)
=>x+1=1
=>x=0(nhận)
5: ĐKXĐ: x<=1/3
\(\sqrt{4\left(1-3x\right)}+\sqrt{9\left(1-3x\right)}=10\)
=>\(2\sqrt{1-3x}+3\sqrt{1-3x}=10\)
=>\(5\sqrt{1-3x}=10\)
=>\(\sqrt{1-3x}=2\)
=>1-3x=4
=>3x=1-4=-3
=>x=-3/3=-1(nhận)
6: ĐKXĐ: x>=3
\(\dfrac{2}{3}\sqrt{x-3}+\dfrac{1}{6}\sqrt{x-3}-\sqrt{x-3}=-\dfrac{2}{3}\)
=>\(\sqrt{x-3}\cdot\left(\dfrac{2}{3}+\dfrac{1}{6}-1\right)=-\dfrac{2}{3}\)
=>\(\sqrt{x-3}\cdot\dfrac{-1}{6}=-\dfrac{2}{3}\)
=>\(\sqrt{x-3}=\dfrac{2}{3}:\dfrac{1}{6}=\dfrac{2}{3}\cdot6=\dfrac{12}{3}=4\)
=>x-3=16
=>x=19(nhận)