Xét hai mệnh đề:
P: “Số tự nhiên n chia hết cho 6”; Q: “Số tự nhiên n chia hết cho 3”.
Xét mệnh đề R: “Nếu số tự nhiên n chia hết cho 6 thì số tự nhiên n chia hết cho 3”.
Mệnh đề R có dạng phát biểu như thế nào?
Cho n là số tự nhiên. Xét các mệnh đề:
P: “n là một số tự nhiên chia hết cho 16”.
Q: “n là một số tự nhiên chia hết cho 8”.
a) Với n = 32, phát biểu mệnh đề P ⇒ Q và xét tính đúng sai của mệnh đề đó.
b) Với n = 40, phát biểu mệnh đề đảo của mệnh đề P ⇒ Q và xét tính đúng sai của mệnh đề đó.
a) Với n = 32, ta có các mệnh đề P, Q khi đó là:
P: “Số tự nhiên 32 chia hết cho 16”;
Q: “Số tự nhiên 32 chia hết cho 8”;
Mệnh đề P ⇒ Q: “Nếu số tự nhiên 32 chia hết cho 16 thì số tự nhiên 32 chia hết cho 8”.
Đây là mệnh đề đúng vì 32 chia hết cho 16 và 8.
b) Với n = 40, ta có các mệnh đề P, Q khi đó là:
P: “Số tự nhiên 40 chia hết cho 16”;
Q: “Số tự nhiên 40 chia hết cho 8”;
Mệnh đề đảo của mệnh đề P ⇒ Q là mệnh đề Q ⇒ P: “Nếu số tự nhiên 40 chia hết cho 8 thì số tự nhiên 40 chia hết cho 16”.
Mệnh đề đảo này là mệnh đề sai. Vì 40 chia hết cho 8 nhưng 40 không chia hết cho 16.
Xét tính đúng - sai của các mệnh đề sau? Giải thích?
a) Nếu số tự nhiên n chia hết cho 9 thì n chia hết cho 3
b) Nếu số tự nhiên n chia hết cho 2 thì n chia hết cho 4.
c) Nếu một tam giác có hai góc bằng nhau thì tam giác đó là tam giác cân.
d) Vì tứ giác có hai đường chéo bằng nhau nên tứ giác đó là hình chữ nhật.
e) Cho hai số thực m và n . Nếu m≥n thì m2≥n2
f) Nếu a⋮c và b⋮c thì ab⋮c .
g) Do hình thang có hai cạnh bên bằng nhau nên hình thang đó là hình thang cân.
a. Đúng, vì $9\vdots 3$ nên $n\vdots 9\Rightarrow n\vdots 3$
b. Sai. Vì cho $n=2\vdots 2$ nhưng $2\not\vdots 4$
c. Đúng, theo định nghĩa tam giác cân
d. Sai. Hình thang cân là 1 phản ví dụ.
e.
Sai. Cho $m=-1; n=-2$ thì $m^2< n^2$
f.
Đúng, vì $a\vdots c, b\vdots c$ nên trong $ab$ có chứa nhân tử $c$
g.
Sai. Hình bình hành là hình thang có 2 cạnh bên bằng nhau nhưng không phải hình thang cân.
Cho a là số tự nhiên, xét các mệnh đề P : “a có tận cùng là 0”, Q: “a chia hết cho 5” Xét tính đúng sai của cả hai mệnh đề trên
Cho mệnh đề \(P\): "Mọi số tự nhiên \(n\) thì \(n^3-n\) luôn chia hết cho \(3\)". Xét tính đúng sai của mệnh đề \(P\), giải thích.
Lời giải:
$n^3-n=n(n^2-1)=n(n-1)(n+1)$ là tích của 3 số nguyên liên tiếp nên luôn chia hết cho $3$
Do đó mệnh đề $P$ đúng.
Điều kiện cần và đủ để số tự nhiên n chia hết cho 2 và 3 là số tự nhiên đó chia hết cho 12,xét tính đúng sai của mệnh đề sau?giải thích giúp tui
Mệnh đề này đúng là bởi vì 12 là bội chung của cả 2 và 3
cho nên khi n chia hết cho 12 thì chắc chắn n sẽ chia hết cho 2 và 3
Cho mệnh đề “n chia hết cho 3” với n là số tự nhiên.
a) Phát biểu “Mọi số tự nhiên n đều chia hết cho 3” có phải là mệnh đề không?
b) Phát biểu “Tồn tại số tự nhiên n đều chia hết cho 3” có phải là mệnh đề không?
a) Phát biểu “Mọi số tự nhiên n đều chia hết cho 3” là một phát biểu sai (vì 2 là số tự nhiên nhưng 2 không chia hết cho 3). Đây là một mệnh đề.
b) Phát biểu “Tồn tại số tự nhiên n đều chia hết cho 3” là một phát biểu đúng (chẳng số 3 là số tự nhiên và 3 chia hết cho 3). Đây là một mệnh đề.
CÁC BẠN GIẢI JUP MIK VỚI !! :))
Bài 1: Xét tính đúng sai của các mệnh đề sau:
a) Phương trình có hai nghiệm phân biệt.
b) 2k là số chẵn. (k là số nguyên bất kì)
c) 211 – 1 chia hết cho 11.
Bài 2: Cho tứ giác ABDC: Xét hai mệnh đề
P: Tứ giác ABCD là hình vuông.
Q: Tứ giác ABCD là hình chữ nhật có hai đường chéo bằng vuông góc với nhau.
Hãy phát biểu mệnh đề P ↔ Q bằng hai cách khác nhau, xét tính đúng sai của các mệnh đề đó.
Bài 3: Cho mệnh đề chứa biến P(n): n2 – 1 chia hết cho 4 với n là số nguyên. Xét tính đúng sai của mệnh đề khi n = 5 và n = 2.
Bài 4: Nêu mệnh đề phủ định của các mệnh đề sau:
Bài 5: Xét tính đúng sai và nêu mệnh đề phủ định của các mệnh đề:
a) Tứ giác ABCD là hình chữ nhật.
b) 16 là số chính phương.
Bài 6: Cho tứ giác ABCD và hai mệnh đề:
P: Tổng 2 góc đối của tứ giác bằng 1800;
Q: Tứ giác nội tiếp được đường tròn.
Hãy phát biểu mệnh đề kéo theo P => Q và xét tính đúng sai của mệnh đề này.
Bài 7: Cho hai mệnh đề
P: 2k là số chẵn.
Q: k là số nguyên
Hãy phát biểu mệnh đề kéo theo và xét tính đúng sai của mệnh đề.
Bài 8: Hoàn thành mệnh đề đúng:
Tam giác ABC vuông tại A nếu và chỉ nếu ...................
- Viết lại mệnh đề dưới dạng một mệnh đề tương đương.
Bài 9: Xét tính đúng sai của các mệnh đề và viết mệnh đề phủ định của các mệnh đề.
Bài 10: Xét tính đúng sai của các suy luận sau: (mệnh đề kéo theo)
Bài 11: Phát biểu điều kiện cần và đủ để một:
Tam giác là tam giác cân.Tam giác là tam giác đều.Tam giác là tam giác vuông cân.Tam giác đồng dạng với tam giác khác cho trước.Phương trình bậc 2 có hai nghiệm phân biệt.Phương trình bậc 2 có nghiệm kép.Số tự nhiên chia hết cho 2; cho 3; cho 5; cho 6; cho 9 và cho 11.Bài 12: Chứng mình rằng: Với hai số dương a, b thì a + b ≥ 2√ab.
Bài 13: Xét tính đúng sai của mệnh đề:
Nếu một số tự nhiên chia hết cho 15 thì chia hết cho cả 3 và 5.
Bài 14: Phát biểu và chứng minh định lí sau:
a) n là số tự nhiên, n2 chia hết cho 3 thì n cũng chia hết cho 3.
b) n là số tự nhiên, n2 chia hết cho 6 thì n cũng chia hết cho cả 6; 3 và 2.
(Chứng minh bằng phản chứng)
Cho tam giác ABC. Xét các mệnh đề:
P: “Tam giác ABC cân”.
Q: “Tam giác ABC có hai đường cao bằng nhau”.
Phát biểu mệnh đề \(P \Leftrightarrow Q\) bằng bốn cách.
4 cách phát biểu mệnh đề \(P \Leftrightarrow Q\):
“Tam giác ABC cân tương đương nó có hai đường cao bằng nhau”
“Tam giác ABC cân là điều kiện cần và đủ để nó có hai đường cao bằng nhau”
“Tam giác ABC cân khi và chỉ khi nó có hai đường cao bằng nhau”
“Tam giác ABC cân nếu và chỉ nếu nó có hai đường cao bằng nhau”
Cho a là số tự nhiên, xét các mệnh đề P : “a có tận cùng là 0”, Q: “a chia hết cho 5”.
Phát biểu mệnh đề P ⇒ Q và mệnh đề đảo của nó
(P ⇒Q): “Nếu a có tận cùng bằng 0 thì a chia hết cho 5”. Mệnh đề đảo (Q⇒P): “Nếu a chia hết cho 5 thì a có tận cùng bằng 0”.