Sử dụng định nghĩa, chứng minh rằng \(\mathop {\lim }\limits_{x \to 2} {x^2} = 4.\)
Sử dụng định nghĩa, tìm các giới hạn sau:
a) \(\mathop {\lim }\limits_{x \to - 3} {x^2};\)
b) \(\mathop {\lim }\limits_{x \to 5} \frac{{{x^2} - 25}}{{x - 5}}.\)
a) \(\mathop {\lim }\limits_{x \to - 3} {x^2};\)
Giả sử \(\left( {{x_n}} \right)\) là dãy số bất kì thỏa mãn \(\lim {x_n} = - 3.\)
Ta có \(\lim x_n^2 = {\left( { - 3} \right)^2} = 9\)
Vậy \(\mathop {\lim }\limits_{x \to - 3} {x^2} = 9.\)
b) \(\mathop {\lim }\limits_{x \to 5} \frac{{{x^2} - 25}}{{x - 5}}.\)
Giả sử \(\left( {{x_n}} \right)\) là dãy số bất kì thỏa mãn \(\lim {x_n} = 5.\)
Ta có \(\lim \frac{{{x_n}^2 - 25}}{{{x_n} - 5}} = \lim \frac{{\left( {{x_n} - 5} \right)\left( {{x_n} + 5} \right)}}{{{x_n} - 5}} = \lim \left( {{x_n} + 5} \right) = \lim {x_n} + 5 = 5 + 5 = 10\)
Vậy \(\mathop {\lim }\limits_{x \to 5} \frac{{{x^2} - 25}}{{x - 5}} = 10.\)
Tìm các giới hạn sau:
a) \(\mathop {\lim }\limits_{x \to - 1} \left( {3{x^2} - x + 2} \right)\)
b) \(\mathop {\lim }\limits_{x \to 4} \frac{{{x^2} - 16}}{{x - 4}}\)
c) \(\mathop {\lim }\limits_{x \to 2} \frac{{3 - \sqrt {x + 7} }}{{x - 2}}\)
a) \(\mathop {\lim }\limits_{x \to - 1} \left( {3{x^2} - x + 2} \right) = \mathop {\lim }\limits_{x \to - 1} \left( {3{x^2}} \right) - \mathop {\lim }\limits_{x \to - 1} x + \mathop {\lim }\limits_{x \to - 1} 2\)
\( = 3\mathop {\lim }\limits_{x \to - 1} \left( {{x^2}} \right) - \mathop {\lim }\limits_{x \to - 1} x + \mathop {\lim }\limits_{x \to - 1} 2 = 3.{\left( { - 1} \right)^2} - \left( { - 1} \right) + 2 = 6\)
b) \(\mathop {\lim }\limits_{x \to 4} \frac{{{x^2} - 16}}{{x - 4}} = \mathop {\lim }\limits_{x \to 4} \frac{{\left( {x - 4} \right)\left( {x + 4} \right)}}{{x - 4}} = \mathop {\lim }\limits_{x \to 4} \left( {x + 4} \right) = \mathop {\lim }\limits_{x \to 4} x + \mathop {\lim }\limits_{x \to 4} 4 = 4 + 4 = 8\)
c) \(\mathop {\lim }\limits_{x \to 2} \frac{{3 - \sqrt {x + 7} }}{{x - 2}} = \mathop {\lim }\limits_{x \to 2} \frac{{\left( {3 - \sqrt {x + 7} } \right)\left( {3 + \sqrt {x + 7} } \right)}}{{\left( {x - 2} \right)\left( {3 + \sqrt {x + 7} } \right)}} = \mathop {\lim }\limits_{x \to 2} \frac{{{3^2} - \left( {x + 7} \right)}}{{\left( {x - 2} \right)\left( {3 + \sqrt {x + 7} } \right)}}\)
\( = \mathop {\lim }\limits_{x \to 2} \frac{{2 - x}}{{\left( {x - 2} \right)\left( {3 + \sqrt {x + 7} } \right)}} = \mathop {\lim }\limits_{x \to 2} \frac{{ - \left( {x - 2} \right)}}{{\left( {x - 2} \right)\left( {3 + \sqrt {x + 7} } \right)}} = \mathop {\lim }\limits_{x \to 2} \frac{{ - 1}}{{3 + \sqrt {x + 7} }}\)
\( = \frac{{\mathop {\lim }\limits_{x \to 2} \left( { - 1} \right)}}{{\mathop {\lim }\limits_{x \to 2} 3 + \sqrt {\mathop {\lim }\limits_{x \to 2} x + \mathop {\lim }\limits_{x \to 2} 7} }} = \frac{{ - 1}}{{3 + \sqrt {2 + 7} }} = - \frac{1}{6}\)
Tính các giới hạn sau:
a) \(\mathop {\lim }\limits_{x \to - 3} \left( {4{x^2} - 5x + 6} \right)\);
b) \(\mathop {\lim }\limits_{x \to 2} \frac{{2{x^2} - 5x + 2}}{{x - 2}}\);
c) \(\mathop {\lim }\limits_{x \to 4} \frac{{\sqrt x - 2}}{{{x^2} - 16}}\).
a) \(\mathop {\lim }\limits_{x \to - 3} \left( {4{x^2} - 5x + 6} \right) = 4.{\left( { - 3} \right)^2} - 5.\left( { - 3} \right) + 6 = 57\)
b) \(\mathop {\lim }\limits_{x \to 2} \frac{{2{x^2} - 5x + 2}}{{x - 2}} = \mathop {\lim }\limits_{x \to 2} \frac{{\left( {x - 2} \right)\left( {2x - 1} \right)}}{{x - 2}} = \mathop {\lim }\limits_{x \to 2} \left( {2x - 1} \right) = 2.2 - 1 = 3\)
c) \(\begin{array}{c}\mathop {\lim }\limits_{x \to 4} \frac{{\sqrt x - 2}}{{{x^2} - 16}} = \mathop {\lim }\limits_{x \to 4} \frac{{\sqrt x - 2}}{{\left( {x - 4} \right)\left( {x + 4} \right)}} = \mathop {\lim }\limits_{x \to 4} \frac{{\sqrt x - 2}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x + 2} \right)\left( {x + 4} \right)}} = \mathop {\lim }\limits_{x \to 4} \frac{1}{{\left( {\sqrt x + 2} \right)\left( {x + 4} \right)}}\\ = \frac{1}{{\left( {\sqrt 4 + 2} \right)\left( {4 + 4} \right)}} = \frac{1}{{32}}\end{array}\)
Tìm các giới hạn sau:
a) \(\mathop {\lim }\limits_{x \to - 2} \left( {{x^2} - 7x + 4} \right)\)
b) \(\mathop {\lim }\limits_{x \to 3} \frac{{x - 3}}{{{x^2} - 9}}\)
c) \(\mathop {\lim }\limits_{x \to 1} \frac{{3 - \sqrt {x + 8} }}{{x - 1}}\)
a: \(\lim\limits_{x\rightarrow-2}x^2-7x+4=\left(-2\right)^2-7\cdot\left(-2\right)+4=22\)
b: \(\lim\limits_{x\rightarrow3}\dfrac{x-3}{x^2-9}=\lim\limits_{x\rightarrow3}\dfrac{1}{x+3}=\dfrac{1}{3+3}=\dfrac{1}{6}\)
c: \(\lim\limits_{x\rightarrow1}\dfrac{3-\sqrt{x+8}}{x-1}=\lim\limits_{x\rightarrow1}\dfrac{9-x-8}{3+\sqrt{x+8}}\cdot\dfrac{1}{x-1}=\lim\limits_{x\rightarrow1}\dfrac{-1}{3+\sqrt{x+8}}\)
\(=-\dfrac{1}{6}\)
Sử dụng kiết quả \(\mathop {\lim }\limits_{x \to 0} \frac{{\sin x}}{x} = 1\), tính đạo hàm của hàm số \(y = \sin x\) tại điểm x bất kì bằng định nghĩa
\(f'\left(x0\right)=\lim\limits_{x\rightarrow x0}\dfrac{f\left(x\right)-f\left(x_0\right)}{x-x_0}\)
\(=\lim\limits_{x\rightarrow x0}\dfrac{sinx-sin\left(x0\right)}{x-x0}\)
\(=\lim\limits_{x\rightarrow x0}\dfrac{2\cdot cos\left(\dfrac{x+x0}{2}\right)\cdot sin\left(\dfrac{x-x0}{2}\right)}{x-x_0}\)
\(=\lim\limits_{x\rightarrow x0}\dfrac{2\cdot sin\left(\dfrac{x-x_0}{2}\right)\cdot cos\left(\dfrac{x+x_0}{2}\right)}{x-x_0}\)
\(=\lim\limits_{x\rightarrow x0}\dfrac{cos\left(x+x_0\right)}{2}=cos\left(x0\right)\)
=>\(\left(sinx'\right)=cosx\)
Sử dụng kết quả \(\mathop {\lim }\limits_{x \to 0} \frac{{{e^x} - 1}}{x} = 1\), tính đạo hàm của hàm số \(y = {e^x}\) tại điểm x bất kì bằng định nghĩa
\(\begin{array}{l}f'(x) = \mathop {\lim }\limits_{x \to 0} \frac{{f(x + {x_0}) - f(x)}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to 0} \frac{{{e^{x + {x_0}}} - {e^x}}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to 0} \frac{{{e^{x + {x_0}}} - {e^x}}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to 0} \frac{{{e^x}({e^{{x_0}}} - 1)}}{x} = {e^x}.\mathop {\lim }\limits_{x \to 0} \frac{{{e^{{x_0}}} - 1}}{x} = {e^x}.1 = {e^x}\\ \Rightarrow f'(x) = {e^x}\end{array}\)
Biết rằng hàm số \(f\left( x \right)\) thỏa mãn \(\mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = 3\) và \(\mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right) = 5.\) Trong trường hợp này có tồn tại giới hạn \(\mathop {\lim }\limits_{x \to 2} f\left( x \right)\) hay không? Giải thích.
Vì \(\mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = 3 \ne \mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right) = 5\) nên không tồn tại giới hạn \(\mathop {\lim }\limits_{x \to 2} f\left( x \right)\)
Sử dụng kết quả \(\mathop {\lim }\limits_{x \to 0} \frac{{\ln (1 + x)}}{x} = 1\), tính đạo hàm của hàm số \(y = \ln x\) tại điểm x dương bất kì bằng định nghĩa
\(\begin{array}{l}f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f(x) - f\left( {{x_0}} \right)}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{\ln x - \ln {x_0}}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{\ln \frac{x}{{{x_0}}}}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{\frac{{\ln \frac{x}{{{x_0}}}}}{{\ln e}}}}{{x - {x_0}}} = \frac{1}{{\ln e}}.\mathop {\lim }\limits_{x \to {x_0}} \frac{{\ln \frac{x}{{{x_0}}}}}{{x - {x_0}}}\\ = \frac{1}{{\ln e}}\mathop {\lim }\limits_{x \to {x_0}} \frac{{\ln \left( {1 + \frac{x}{{{x_0}}} - 1} \right)}}{{x - {x_0}}} = \frac{1}{{\ln e}}\mathop {\lim }\limits_{x \to {x_0}} \frac{{\frac{x}{{{x_0}}} - 1}}{{x - {x_0}}} = \frac{1}{{\ln e}}.\mathop {\lim }\limits_{u \to 0} \frac{{\frac{{x - {x_0}}}{{{x_0}}}}}{{x - {x_0}}} = \frac{1}{{{x_0}\ln e}}\\ \Rightarrow \left( {\ln x} \right)' = \frac{1}{{x\ln e}} = \frac{1}{x}\end{array}\)
Tìm các giới hạn sau:
a) \(\mathop {\lim }\limits_{x \to {4^ + }} \frac{1}{{x - 4}}\);
c) \(\mathop {\lim }\limits_{x \to {2^ - }} \frac{x}{{2 - x}}\).
a) Áp dụng giới hạn một bên thường dùng, ta có : \(\mathop {\lim }\limits_{x \to {4^ + }} \frac{1}{{x - 4}} = + \infty \)
b) \(\mathop {\lim }\limits_{x \to {2^ + }} \frac{x}{{2 - x}} = \mathop {\lim }\limits_{x \to {2^+ }} \frac{{ - x}}{{x - 2}} = \mathop {\lim }\limits_{x \to {2^ + }} \left( { - x} \right).\mathop {\lim }\limits_{x \to {2^ + }} \frac{1}{{x - 2}}\)
Ta có: \(\mathop {\lim }\limits_{x \to {2^ + }} \left( { - x} \right) = - \mathop {\lim }\limits_{x \to {2^ + }} x = - 2;\mathop {\lim }\limits_{x \to {2^ +}} \frac{1}{{x - 2}} = +\infty \)
\( \Rightarrow \mathop {\lim }\limits_{x \to {2^ - }} \frac{x}{{2 - x}} = - \infty \)