Chứng minh rằng \(\lim {\left( {\frac{e}{\pi }} \right)^n} = 0.\)
Chứng minh rằng
\(\tan\left(x\right)\tan\left(x+\frac{\pi}{3}\right)+\tan\left(x+\frac{\pi}{3}\right)\tan\left(x+\frac{2\pi}{3}\right)+\tan\left(x\right)\tan\left(x+\frac{2\pi}{3}\right)=3\)
thầy cô và các bạn biết câu nào giúp mình câu đó em rất cảm ơn ạ
Chứng minh rằng : \(\cos^2x+\cos^2\left(\frac{\pi}{3}+x\right)+\cos^2\left(\frac{2\pi}{3}+x\right)=\frac{3}{2}\)
Ta có \(A=\frac{3}{2}+\frac{1}{2}\left[\cos2x+\cos\left(\frac{2\pi}{3}+2x\right)+\cos\left(\frac{4\pi}{3}+2x\right)\right]\)
\(=\frac{3}{2}+\frac{1}{2}\left[\cos2x+2\cos\left(\pi+2x\right).\cos\left(-\frac{\pi}{3}\right)\right]=\frac{3}{2}+\frac{1}{2}\left[\cos2x+\cos2x\right]=\frac{3}{2}\)
chứng minh rằng
2) \(sin^2x+sin^2\left(\frac{\pi}{2}-x\right)-tan\left(\frac{\pi}{2}+x\right)tanx=2\)
\(sin^2x+sin^2\left(\frac{\pi}{2}-x\right)-tan\left(\frac{\pi}{2}+x\right).tanx\)
\(=sin^2x+cos^2x-\left(-cotx\right).tanx\)
\(=1-\left(-1\right)=2\)
Cho dãy số \(\left(u_n\right)\) : \(\left\{{}\begin{matrix}u_1=\frac{5}{2}\\u_{n+1}=\frac{1}{2}u_n^2-u_n+2\end{matrix}\right.\) với n=1,2,3... Chứng minh rằng \(\lim\limits_{n\rightarrow+\infty}u_n=+\infty\) và tìm \(\lim\limits_{n\rightarrow+\infty}\left(\frac{1}{u_1}+\frac{1}{u_2}+...+\frac{1}{u_n}\right)\) ?
1) Có \(u_{n+1}-u_n=\dfrac{1}{2}u^2_n-2u_n+2=\dfrac{1}{2}\left(u_n-2\right)^2\) (1)
+) CM \(u_n>2\) (n thuộc N*)
n=1 : u1= 5/2 > 2 (đúng)
Giả sử n=k, uk > 2 (k thuộc N*)
Ta cần CM n = k + 1. Thật vậy ta có:
\(u_{k+1}=\dfrac{1}{2}u^2_k-u_k+2=\dfrac{1}{2}\left(u_k-2\right)^2+u_k\) (đúng)
Vậy un > 2 (n thuộc N*) (2)
Từ (1) (2) => un+1 - un > 0, hay un+1 > un
=> (un) là dãy tăng => \(\lim\limits_{n\rightarrow\infty}u_n=+\infty\)
2) \(2u_{n+1}=u^2_n-2u_n+4\)
\(\Leftrightarrow2u_{n+1}-4=u^2_n-2u_n\)
\(\Leftrightarrow2\left(u_{n+1}-2\right)=u_n\left(u_n-2\right)\)
\(\Leftrightarrow\dfrac{1}{u_{n+1}-2}=\dfrac{2}{u_n\left(u_n-2\right)}=\dfrac{1}{u_n-2}-\dfrac{1}{u_n}\)
\(\Leftrightarrow\dfrac{1}{u_n}=\dfrac{1}{u_n-2}-\dfrac{1}{u_{n+1}-2}\)
\(S=\dfrac{1}{u_1}+\dfrac{1}{u_2}+...+\dfrac{1}{u_n}\)
\(=\dfrac{1}{u_1-2}-\dfrac{1}{u_2-2}+\dfrac{1}{u_2-2}+...-\dfrac{1}{u_{n+1}-2}\)
\(=\dfrac{1}{u_1-2}-\dfrac{1}{u_{n+1}-2}\)
\(=2-\dfrac{1}{u_{n+1}-2}\)
\(\Leftrightarrow\lim\limits_{n\rightarrow\infty}S=2\)
\(lim\left(\frac{-\sqrt{2}}{pi}\right)^n\)
\(\left|\frac{-\sqrt{2}}{\pi}\right|< 1\Rightarrow lim\left(\frac{-\sqrt{2}}{\pi}\right)^n=0\)
Chứng minh rằng : \(\frac{k}{n\left(n+k\right)}=\frac{1}{n}-\frac{1}{n+k}\) ( với n,k E N, n #0 )
Ta có :
1/n - 1/n + k
= n + k - n / n . ( n + k )
= k / n . ( n + k )
Ta có \(\frac{1}{n}-\frac{1}{n+k}=\frac{n+k}{n\cdot\left(n+k\right)}-\frac{n}{n\cdot\left(n+k\right)}=\frac{k}{n\cdot\left(n+k\right)}\) (dpcm)
Câu 1 : chứng minh rằng : \(\frac{sina+sin2a+sin3a}{cosa+cos2a+cos3a}=tan2a\)
Câu 2 : chứng minh : \(cos^2\left(\alpha-\frac{\pi}{4}\right)-sin^2\left(\alpha-\frac{\pi}{4}\right)=sin2\alpha\)
\(\frac{sina+sin3a+sin2a}{cosa+cos3a+cos2a}=\frac{2sin2a.cosa+sin2a}{2cos2a.cosa+cos2a}=\frac{sin2a\left(2cosa+1\right)}{cos2a\left(2cosa+1\right)}=\frac{sin2a}{cos2a}=tan2a\)
\(cos^2\left(a-\frac{\pi}{4}\right)-sin^2\left(a-\frac{\pi}{4}\right)=cos\left(2a-\frac{\pi}{2}\right)\)
\(=cos\left(\frac{\pi}{2}-2a\right)=sin2a\)
Cho hàm số \(f\left( x \right) = 2{\sin ^2}\left( {3x - \frac{\pi }{4}} \right).\) Chứng minh rằng \(\left| {f'\left( x \right)} \right| \le 6\) với mọi x.
\(f'\left(x\right)=4sin\left(3x-\dfrac{\pi}{4}\right)\cdot\left[sin\left(3x-\dfrac{\pi}{4}\right)\right]'\\ =4\left(3x-\dfrac{\pi}{4}\right)'cos\left(3x-\dfrac{\pi}{4}\right)sin\left(3x-\dfrac{\pi}{4}\right)\\ =6sin\left(6x-\dfrac{\pi}{2}\right)\)
Vì \(-1\le sin\left(6x-\dfrac{\pi}{2}\right)\le1\Rightarrow-6\le6sin\left(6x-\dfrac{\pi}{2}\right)\le6\Leftrightarrow-6\le f'\left(x\right)\le6\)
Vậy \(\left|f'\left(x\right)\right|\le6\forall x\)