Tính A=\(\frac{1}{3}+\frac{1}{3+6}+\frac{1}{3+6+9}+......+\frac{1}{3+6+9+....+2013}\)
tính
a, \(\frac{16^3.3^{10}+120.6^9}{4^6.3^{12}+6^{11}}\)
b , \(\left(\frac{0,4-\frac{8}{9}+\frac{2}{11}}{1,4-\frac{7}{9}+\frac{7}{11}}-\frac{\frac{1}{3}-0,25+\frac{1}{5}}{1\frac{1}{6}-0,875+0,7}\right):\frac{2012}{2013}\)
c, A
= \(1+\frac{1}{2}.\left(1+2\right)+\frac{1}{3}.\left(1+2+3\right)+\frac{1}{4}.\left(1+2+3+...+\frac{1}{20}.\left(1+2+3+....+20\right)\right).155\)
\(a,\frac{16^3.3^{10}+120.6^9}{4^6.3^{12}+6^{11}}\)
\(=\frac{\left(2^4\right)^3.3^{10}+2^3.3.5.\left(2.3\right)^9}{\left(2^2\right)^6.3^{12}+\left(2.3\right)^{11}}\)
\(=\frac{2^{12}.3^{10}+2^3.3.5.2^9.3^9}{2^{12}.3^{12}+2^{11}.3^{11}}\)
\(=\frac{2^{12}.3^{10}+2^{12}.3^{10}.5}{2^{11}.3^{11}\left(2.3+1\right)}\)
\(=\frac{2^{12}.3^{10}\left(1+5\right)}{2^{11}.3^{11}.7}=\frac{2.6}{3.7}=\frac{4}{7}\)
Đáp số: A = | |
A = \(\dfrac{1}{3\times6}\) + \(\dfrac{1}{6\times9}\) + \(\dfrac{1}{9\times12}\)+...+\(\dfrac{1}{144\times147}\)
A = \(\dfrac{1}{3}\) \(\times\)( \(\dfrac{3}{3\times6}\) + \(\dfrac{3}{6\times9}\)+\(\dfrac{1}{9\times12}\)+...+\(\dfrac{3}{144\times147}\))
A = \(\dfrac{1}{3}\) \(\times\)(\(\dfrac{1}{3}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{12}+...+\dfrac{1}{144}-\dfrac{1}{147}\))
A = \(\dfrac{1}{3}\)\(\times\)(\(\dfrac{1}{3}\) - \(\dfrac{1}{147}\))
A = \(\dfrac{1}{3}\) \(\times\)\(\dfrac{16}{49}\)
A = \(\dfrac{16}{147}\)
Bài 1 thực hiện phép tính
a)\(\frac{45}{19}-\left(\frac{1}{2}+\left(\frac{1}{3}+\left(\frac{1}{4}\right)^{-1}\right)^{-1}\right)^{-1}.\)
b) \(\frac{5.4^{15}.9^9-4.3^{20}.8^9}{5.2^{10}.6^{19}-7.2^{29}.27^6}.\)
Bài 2. tìm x, biết:
a) 2(x-1) - 3(2x+2) - 4(2x+3) =16
b) \(3\frac{1}{2}:\left|2x-1\right|=\frac{21}{22}\)
c) |x2+|x-1|| = x2+2
Bài 3. Chứng minh rằng số có dạng abcabc luôn chia hết cho 11
Bài 4.tính:
a) A = \(\left(\frac{0,4-\frac{2}{9}+\frac{2}{11}}{1,4-\frac{7}{9}+\frac{7}{11}}-\frac{\frac{1}{3}-0,25+\frac{1}{5}}{1\frac{1}{6}-0,875+0,7}\right):\frac{2012}{2013}\)
b) B =\(4.\left(-\frac{1}{2}\right)^2-2.\left(-\frac{1}{2}\right)^2+3.\left(-\frac{1}{2}\right)+1\)
c) C =\(\frac{1}{2}:\left(-1\frac{1}{2}\right):1\frac{1}{3}:\left(-1\frac{1}{4}\right):1\frac{1}{5}:\left(-1\frac{1}{6}\right):...:\left(-1\frac{1}{100}\right)\)
d) D =\(\frac{4^6.9^5+6^9.120}{-8^4.3^{12}+6^{11}}\)
CMR:
\(\frac{1}{3^2}+\frac{1}{6^2}+\frac{1}{9^2}+...+\frac{1}{2013^2}< \frac{1}{5}\)
\(A< \frac{1}{1\cdot3}+\frac{1}{3\cdot6}+\frac{1}{6\cdot9}+..........+\frac{1}{2011\cdot2013}\)
\(\frac{1}{3}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{6}+\frac{1}{6}-\frac{1}{9}+.....+\frac{1}{2010}-\frac{1}{2013}\right)\)
\(\frac{1}{3}\left(1-\frac{1}{2013}\right)=\frac{1}{3}\cdot\frac{2012}{2013}\)
theo mình là vậy thôi chứ ko chắc chắn đouo
bạn nhok ma kết làm gần đúng nhưng vẫn sai nhé
Đặt biểu thức là A
\(A=\frac{1}{9}\left(\frac{1}{1}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{671^2}\right)< \frac{1}{9}\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{671.672}\right)\)
\(\Rightarrow A< \frac{1}{9}\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{671}-\frac{1}{672}\right)\)
\(\Rightarrow A< \frac{1}{9}\left(1-\frac{1}{672}\right)=\frac{1}{9}.\frac{671}{672}< \frac{1}{5}.1=\frac{1}{5}\)
Bài 1 : Tính :
a)\(\frac{\left(13\frac{1}{4}-2\frac{5}{27}-10\frac{5}{6}\right)\times230\frac{1}{5}+46\frac{3}{4}}{\left(1\frac{3}{10}+\frac{10}{3}\right)\div\left(12\frac{1}{3}-14\frac{2}{7}\right)}\)
b) \(\frac{2^{12}\times3^5-4^6\times9^2}{\left(2^4\times3\right)^6+8^4\times3^5}-\frac{5^{10}\times7^3-25^5\times49^2}{\left(125\times7\right)^3+5^9\times14^3}\)
c)P=\(\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{2016}}{\frac{2015}{1}+\frac{2014}{2}+\frac{2013}{3}+....+\frac{1}{2015}}\)
A = \(\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}-1\right)\times\left(1-\frac{8}{1}-\frac{4}{1}-\frac{2}{1}\right)\)
B = \(\frac{\frac{3}{1}-\frac{6}{3}-\frac{9}{6}-\frac{369}{1}}{\frac{1}{3}+\frac{3}{6}+\frac{6}{9}-\frac{1}{963}}\)
C = \(\frac{1}{1}-\frac{1}{2}+\frac{3}{1}-\frac{1}{4}+\frac{5}{1}-\frac{1}{6}+\frac{7}{1}-\frac{1}{8}+\frac{9}{1}-\frac{1}{10}\)
so sánh các số trên ( A , B , C )
a= 1/2 + 1/4 + 1/8 - 1 x 1 + 8/1 - 4/1 - 2/1=\(1\frac{7}{8}\)=1,875
b=3/1 - 6/3 - 9/6 - 369/1 : 1/3 + 3/6 + 6/9 - 1/963 \(\approx\)186,665628245067
c=1/1 - 1/2 + 3/1 - 1/4 + 5/1 - 1/6 + 7/1 - 1/8 + 9/1 - 1/10=\(\approx\)23,8583333333333
vậy a>b>c
**************************l i k e***********************************8
A = \(\left(-\frac{1}{8}\right)\times\left(-13\right)=\frac{13}{8}\) => 0 < A < 2
B: Tử âm ; mẫu dương => B < 0
C = \(\left(\frac{1}{1}+\frac{3}{1}+\frac{5}{1}+\frac{7}{1}+\frac{9}{1}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+\frac{1}{8}+\frac{1}{10}\right)\)
= 25 \(-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+\frac{1}{8}+\frac{1}{10}\right)\)
Dễ có: B < A < C
1.Tính bằng cách hợp lí :
a)\(\left(\frac{-4}{9}+\frac{3}{5}\right):\frac{5}{6}+\left(\frac{1}{5}+\frac{5}{9}\right):\frac{5}{6}\)
b)\(\frac{1}{3^2}-\left(\frac{1}{3}\right)^2.\left(\frac{-1}{3}\right)^2\)
Tính nhanh:
a) \(2.\frac{3}{7}+\left(\frac{2}{9}-1\frac{3}{7}\right)-\frac{5}{3}:\frac{1}{9}\)
b) \(\frac{-11}{23}.\frac{6}{7}+\frac{8}{7}.\frac{-11}{23}-\frac{1}{23}\)
c )\(\left(\frac{377}{-231}-\frac{123}{89}+\frac{34}{791}\right).\left(\frac{1}{6}-\frac{1}{8}-\frac{1}{24}\right)\)
d) \(19\frac{5}{8}:\frac{7}{12}-15\frac{1}{4}:\frac{7}{12}\)
e) \(\frac{2}{5}.\frac{1}{3}-\frac{2}{15}:\frac{1}{5}+\frac{3}{5}.\frac{1}{3}\)
a: \(=\dfrac{17}{7}+\dfrac{2}{9}-\dfrac{10}{7}-\dfrac{5}{3}\cdot9=1+\dfrac{2}{9}-15=-14+\dfrac{2}{9}=-\dfrac{126}{9}+\dfrac{2}{9}=-\dfrac{124}{9}\)
b: \(=\dfrac{-11}{23}\left(\dfrac{6}{7}+\dfrac{8}{7}\right)-\dfrac{1}{23}=\dfrac{-22}{23}-\dfrac{1}{23}=-1\)
c: \(=\left(\dfrac{377}{-231}-\dfrac{123}{89}+\dfrac{34}{791}\right)\cdot\dfrac{4-3-1}{24}=0\)
d: \(=\dfrac{12}{7}\left(19+\dfrac{5}{8}-15-\dfrac{1}{4}\right)=\dfrac{12}{7}\cdot\dfrac{35}{8}=\dfrac{15}{2}\)
Phép tính nào dưới đây là đúng?
(A) \(\frac{2}{3} + \frac{{ - 4}}{6} = \frac{{ - 2}}{6}\)
(B) \(\frac{2}{3}.\frac{{ - 1}}{5} = \frac{{3 - 2}}{5}\)
(C) \(\frac{2}{3} - \frac{3}{5} = \frac{1}{{15}}\)
(D) \(\frac{3}{5}:\frac{3}{{ - 5}} = - \frac{9}{{25}}\)
(A) \(\frac{2}{3} + \frac{{ - 4}}{6} = \frac{4}{6} + \frac{{ - 4}}{6} = 0\) => A sai
(B) \(\frac{2}{3}.\frac{{ - 1}}{5} = \frac{{ - 2}}{{15}}\) mà \(\frac{{3 - 2}}{5} = \frac{1}{5}\) => B sai
(C) \(\frac{2}{3} - \frac{3}{5} = \frac{{10}}{{15}} - \frac{9}{{15}} = \frac{1}{{15}}\) => C đúng
(D) \(\frac{3}{5}:\frac{3}{{ - 5}} = \frac{3}{5}.\frac{{ - 5}}{3} = \frac{{ - 15}}{{15}} = - 1\) => D sai
=> Chọn C.