Viết \(\dfrac{5}{9}\) và \(\dfrac{5}{99}\) dưới dạng số thập phân vô hạn tuần hoàn.
Giải thích vì sao các phân số sau viết được dưới dạng số thập phân vô hạn tuần hoàn rồi viết chúng dưới dạng đó :
\(\dfrac{1}{6};\dfrac{-5}{11};\dfrac{4}{9};\dfrac{-7}{18}\)
Vì khi phân tích mẫu ra thừa số nguyên tố, trong đó có thừa số khác 2 và 5 nên cả bốn phân số này viết được dưới dạng số thập phân vô hạn tuần hoàn
a) Trong các phân số sau đây, phân số nào viết được dưới dạng số thập phân hữu hạn, phân số nào viết được dưới dạng số thập phân vô hạn tuần hoàn ? Giải thích ?
\(\dfrac{5}{8};\dfrac{-3}{20};\dfrac{4}{11};\dfrac{15}{22};\dfrac{-7}{12};\dfrac{14}{35}\)
b) Viết các phân số trên dưới dạng số thập phân hữu hạn hoặc số thập phân vô hạn tuần hoàn (viết gọn với chu kì trong dấu ngoặc)
a) Các phân số được viết dưới dạng tối giản là:
\(\dfrac{5}{8};\dfrac{-3}{20};\dfrac{4}{11};\dfrac{15}{22};\dfrac{-7}{12};\dfrac{2}{5}\)
Lần lượt xét các mẫu:
8 = 23; 20 = 22.5 11
22 = 2.11 12 = 22.3 35 = 7.5
+ Các mẫu không chứa thừa số nguyên tố nào khác 2 và 5 là 8; 20; 5 nên các phân số viết dưới dạng số thập phân hữu hạn.
Kết quả là:
\(\dfrac{5}{8}=0,625\) \(\dfrac{-3}{20}=-0,15\) \(\dfrac{14}{35}=\dfrac{2}{5}=0,4\)
+ Các mẫu có chứa thừa số nguyên tố khác 2 và 5 là 11, 22, 12 nên các phân số viết dưới dạng số thập phân vô hạn tuần hoàn.
Kết quả là:
\(\dfrac{4}{11}=0,\left(36\right)\) \(\dfrac{-3}{20}=0,6\left(81\right)\) \(\dfrac{-7}{12}=-0,58\left(3\right)\)
b) Các phân số được viết dạng số thập phân hữu hạn
\(\dfrac{5}{8}=0,625\) \(\dfrac{-3}{20}=0,15\) \(\dfrac{14}{35}=0,4\)
Các số thập phân vô hạn tuần hoàn là:
\(\dfrac{15}{22}=0,6\left(81\right)\) \(\dfrac{-7}{12}=-0,58\left(3\right)\) \(\dfrac{4}{11}=0,\left(36\right)\)
a) Các phân số được viết dưới dạng tối giản là:
58;−320;411;1522;−712;2558;−320;411;1522;−712;25.
Lần lượt xét các mẫu:
8 = 23; 20 = 22.5 11
22 = 2.11 12 = 22.3 35 = 7.5
+ Các mẫu không chứa thừa số nguyên tố nào khác 2 và 5 là 8; 20; 5 nên các phân số viết dưới dạng số thập phân hữu hạn.
Kết quả là:
58=0,625;58=0,625; −320=−0,15−320=−0,15; 1435=25=0,41435=25=0,4
+ Các mẫu có chứa thừa số nguyên tố khác 2 và 5 là 11, 22, 12 nên các phân số viết dưới dạng số thập phân vô hạn tuần hoàn.
Kết quả là:
411=0,(36)411=0,(36) 1522=0,6(81)1522=0,6(81) −712=0,58(3)−712=0,58(3)
b) Các phân số được viết dạng số thập phân hữu hạn hoặc số thập phân vô hạn tuần hoàn là:
58=0,62558=0,625 −320=−0,15−320=−0,15 411=0,(36)411=0,(36)
1522=0,6(81)1522=0,6(81) −712=0,58(3)−712=0,58(3) 1435=0,4
a) trong các phân số sau đây, phân số nào việt được dưới dạng số thập phân hữu hạn, phân số nào viết được dưới dạng số thập phân vô hạn tuần hoàn ? Giải thích.
\(\dfrac{5}{8};\dfrac{-3}{20};\dfrac{4}{11};\dfrac{15}{22};\dfrac{-7}{12};\dfrac{14}{35}.\)
b) Viết các phân số trên dưới dạng số thập phân hữu hạn hoặc số thập phân vô hạn tuồn hoàn (viết gọn với chu kì trong dấu ngoặc).
a) Viết các phân số sau dưới dạng số thập phân vô hạn tuần hoàn (dùng dấu ngoặc để chỉ rõ chu kì): \(\dfrac{1}{9};\dfrac{1}{99}\)
Em có nhận xét gì về kết quả nhận được?
b) Em hãy dự đoán dạng thập phân của \(\dfrac{1}{999}\)?
a) - Viết dạng thập phân vô hạn tuần hoàn:\(\dfrac{1}{9};\dfrac{1}{99}\) là: \(\dfrac{1}{9}=0,(1);\dfrac{1}{99}=0,(01)\)
- Nhận xét:
Dạng thập phân vô hạn tuần hoàn của phân số có dạng \(\dfrac{1}{99...9}\) như sau:
\(\dfrac{1}{99...9}= 0,(0…001) \) ( n chữ số 9); ( \(n-1\) chữ số 0)
b) Dự đoán kết quả của \(\dfrac{1}{999}\)
Theo nhận xét ở câu a ta có: \(\dfrac{1}{999}=0,(001)\)
Giải thích vì sao các phân số sau được viết dưới dạng số thập phân vô hạn tuần hoàn rồi viết chúng dưới dạng đó.
a)\(\dfrac{\text{7}}{\text{12}}\)
b)\(\dfrac{\text{-7}}{\text{125}}\)
c)\(\dfrac{\text{5}}{\text{33}}\)
d)\(\dfrac{\text{-18}}{\text{11}}\)
a: 12 khi phân tích thành nhân tử, có thừa số 3 là thừa số khác 2 và 5 ở trong nên 7/12 viết được dưới dạng số thập phân vô hạn tuần hoàn
Giải thích vì sao các phân số sau viết được dưới dạng số thập phân vô hạn tuần hoàn rồi viết chúng dưới dạng đó :
\(\dfrac{1}{6};\dfrac{-5}{11};\dfrac{4}{9};\dfrac{-7}{18}\)
Các phân số đã cho có mẫu dương và các mẫu đó lần lượt là 6=2.3, 11=1.11, 9=3.3, 18 = 2. đều có chứa thừa số nguyên tố khác 2 và 5 nên chúng được viết dưới dạng số thập phân vô hạn tuần hoàn
Ta được:
Các phân số đã cho có mẫu dương. Các mẫu đó lần lượt là 6 = 2.3,
11 = 1.11, 9 = 3.3, 18 = 2.32 đều có chứa thừa số nguyên tố khác 2
và 5 \(\Rightarrow\) Chúng được viết dưới dạng số thập phân vô hạn tuần hoàn.
Ta được: \(\dfrac{1}{6}=0,1\left(6\right);-\dfrac{5}{11}=-0,\left(45\right);\dfrac{9}{4}=0,\left(4\right);\dfrac{-7}{18}=-0,3\left(8\right)\)
Giải thích vì sao các phân số sau viết được dưới dạng số thập phân vô hạn tuần hoàn rồi viết chúng dưới dạng đó :
\(\dfrac{5}{6};\dfrac{-5}{3};\dfrac{7}{15};\dfrac{-3}{11}\)
Vì mẫu của các phân số này có ước nguyên tố khác 2 và 5.
\(\dfrac{5}{6}=0,8\left(3\right)\)
\(\dfrac{-5}{3}=-1,\left(6\right)\)
\(\dfrac{7}{15}=0,4\left(6\right)\)
\(\dfrac{-3}{11}=-0,\left(27\right)\)
a, Trong các phân số sau đây , phân số nào viết được dưới dạng số thập phân hữu hạn , phân số nào viết được dưới dạng số thập phân vô hạn tuần hoàn ? giải thích .
5/8 ; -3/20 ; 4/11 ; 15/22 ; -7/12 ; 14/35
b , Viết các phân số trên dưới dạng số thập phân hữu hạn hoặc số thập phân vô hạn tuần hoàn ( viết gọn với chu kì trong dấu ngoặc )
Phân số hữu hạn là : \(\frac{5}{8}=0.625,-\frac{3}{20}=-0.15\)\(\frac{14}{35}=\frac{2}{5}=0.4\) vì mẫu tối giản của chúng là tích của các lũy thừa 2 và 5.
Phân số còn lại là vô hạn tuần hoàn vì mẫu của chúng không phân tích được thành tích của các lúy thừa 2 và 5.
Số \(\frac{4}{11}=0.\left(36\right),\frac{15}{22}=0.68\left(18\right),-\frac{7}{12}=-0.58\left(3\right)\)
a) Tính tổng của cấp số nhân lùi vô hạn (un), với u1=\(\dfrac{2}{3}\),q=−\(\dfrac{1}{4}\)
b) Biểu diễn số thập phân vô hạn tuần hoàn 1,(6) dưới dạng phân số
a: \(S=\dfrac{\dfrac{2}{3}}{\dfrac{5}{4}}=\dfrac{8}{15}\)
b: 1,(6)=5/3