Tính:
a) \(({x^2} - 6)({x^2} + 6)\);
b) \((x - 1)({x^2} + x + 1)\).
Tính:
a) \( - 2{x^2} + 6{x^2}\); b) \(4{x^3} - 8{x^3}\);
c) \(3{x^4}( - 6{x^2})\); d) \(( - 24{x^6}):( - 4{x^3})\).
a) \( - 2{x^2} + 6{x^2} = ( - 2 + 6).{x^2} = 4{x^2}\);
b) \(4{x^3} - 8{x^3} = (4 - 8).{x^3} = - 4{x^3}\);
c) \(3{x^4}( - 6{x^2}) = 3.( - 6).{x^4}.{x^2} = - 18{x^{4 + 2}} = - 18{x^6}\);
d) \(( - 24{x^6}):( - 4{x^3}) = ( - 24: - 4).({x^6}:{x^3}) = 6{x^{6 - 3}} = 6{x^3}\).
Tính:
a) \(\dfrac{x+1}{2x-6}+\dfrac{2x+3}{x^2+3x}\)
b) \(\dfrac{3}{2x+6}-\dfrac{x-6}{3x^2+6}\)
c) \(\dfrac{2x+6}{3x^2-x}:\dfrac{x^2+3x}{1-3x}\)
c: \(=\dfrac{2\left(x+3\right)}{x\left(3x-1\right)}\cdot\dfrac{-\left(3x-1\right)}{x\left(x+3\right)}=\dfrac{-2}{x^2}\)
Cho x^2-x=8. Tính:
A=x^6-2x^4-x+x^2+x^3
Tính:
a) 2/3 + 1/6 - 7/12 = ...
b) (2/3 + 3/4) x 6 = ...
Tính:
a) \(({x^3} + 1):({x^2} - x + 1)\);
b) \((8{x^3} - 6{x^2} + 5):({x^2} - x + 1)\).
a)
Vậy \(({x^3} + 1):({x^2} - x + 1) = x + 1\).
b)
Vậy \((8{x^3} - 6{x^2} + 5) = ({x^2} - x + 1)(8x + 2) + ( - 6x + 3)\)
Cho mik hỏi thêm câu nữa...
Tính:
a. 9 x 2 + 6 / 9 x 3 + 6.
b. 21 x 7 x11 / 33 x 4.
a: \(=\dfrac{18+6}{27+6}=\dfrac{24}{33}=\dfrac{8}{11}\)
b: \(=\dfrac{21\cdot7\cdot11}{3\cdot11\cdot4}=\dfrac{147}{12}=\dfrac{49}{4}\)
Tính:
a) 9/5 + 2/5 x 4/6
b) 3/8 x 2 - 6/7 x 1/3
a,`9/5+2/5xx4/6=9/5+4/15=27/15+4/15=31/15`
b,`3/8xx2-6/7xx1/3=3/4-2/7=21/18-8/28=13/28`
a) 9/5+ 4/15
= 27/15+4/15
= 31/15
b) 3/4- 2/7
= 13/28
\(a,=\dfrac{9}{5}+\dfrac{4}{15}=\dfrac{27}{15}+\dfrac{4}{15}=\dfrac{31}{15}\\ b,=\dfrac{3}{4}-\dfrac{2}{7}=\dfrac{13}{28}\)
Tính:
a) \(({x^2} + 2x + 3) + (3{x^2} - 5x + 1)\);
b) \((4{x^3} - 2{x^2} - 6) - ({x^3} - 7{x^2} + x - 5)\);
c) \( - 3{x^2}(6{x^2} - 8x + 1)\);
d) \((4{x^2} + 2x + 1)(2x - 1)\);
e) \(({x^6} - 2{x^4} + {x^2}):( - 2{x^2})\);
g) \(({x^5} - {x^4} - 2{x^3}):({x^2} + x)\).
a) \(({x^2} + 2x + 3) + (3{x^2} - 5x + 1) = ({x^2} + 3{x^2}) + (2x - 5x) + (3 + 1) = 4{x^2} - 3x + 4\);
b) \(\begin{array}{l}(4{x^3} - 2{x^2} - 6) - ({x^3} - 7{x^2} + x - 5) = 4{x^3} - 2{x^2} - 6 - {x^3} + 7{x^2} - x + 5\\ = (4{x^3} - {x^3}) + ( - 2{x^2} + 7{x^2}) - x + ( - 6 + 5) = 3{x^3} + 5{x^2} - x - 1\end{array}\);
c) \(\begin{array}{l} - 3{x^2}(6{x^2} - 8x + 1) = - 3{x^2}.6{x^2} - - 3{x^2}.8x + - 3{x^2}.1\\ = - 18{x^{2 + 2}} + 24{x^{2 + 1}} - 3{x^2} = - 18{x^4} + 24{x^3} - 3{x^2}\end{array}\);
d) \(\begin{array}{l}(4{x^2} + 2x + 1)(2x - 1) = (4{x^2} + 2x + 1).2x - (4{x^2} + 2x + 1).1 = 4{x^2}.2x + 2x.2x + 1.2x - 4{x^2} - 2x - 1\\ = 8{x^{2 + 1}} + 4{x^{1 + 1}} + 2x - 4{x^2} - 2x - 1 = 8{x^3} + 4{x^2} + 2x - 4{x^2} - 2x - 1 = 8{x^3} - 1\end{array}\);
e) \(\begin{array}{l}({x^6} - 2{x^4} + {x^2}):( - 2{x^2}) = {x^6}:( - 2{x^2}) - 2{x^4}:( - 2{x^2}) + {x^2}:( - 2{x^2})\\ = - \dfrac{1}{2}{x^{6 - 2}} + {x^{4 - 2}} - \dfrac{1}{2}{x^{2 - 2}} = - \dfrac{1}{2}{x^4} + {x^2} - \dfrac{1}{2}.\end{array}\);
g)
\(({x^5} - {x^4} - 2{x^3}):({x^2} + x)=x^3-2x^2\)
Thực hiện phép tính:
a) (x³ + 2x² - 2x + 3) : (x + 3)
b) (x³ + x² + x + 6) : (x + 2)
\(a,=\left(x^3+3x^2-x^2-3x+x+3\right):\left(x+3\right)\\ =\left(x+3\right)\left(x^2-x+1\right):\left(x+3\right)\\ =x^2-x+1\\ b,=\left(x^3+2x^2-x^2-2x+3x+6\right):\left(x+2\right)\\ =\left(x+2\right)\left(x^2-x+3\right):\left(x+2\right)\\ =x^2-x+3\)