Cho số nguyên tố p=abc
CMR : PT ax2 +bx+c=0 không có nghiệm hữu tỉ.
Cho P=abc là số nguyên tố
CMR pt Ax2+Bx+C=0 không có nghiệm hữu tỉ
Cho đa thức f(x) = ax2 + bx + c với a, b, c là các hệ số nguyên sao cho abc là số nguyên tố có 3 chữ số. Chứng minh rằng : f(x) không có nghiệm hữu tỉ.
Cho p= abc (có gạch trên đầu) là một số nguyên tố. Chứng minh rằng phương trình ax^2+ bx+c=0 không có nghiệm hữu tỉ
Ta có:Δ=b2−4acΔ=b2−4ac
Xét Δ≥0Δ≥0
giả sử pt đó có nghiệm hữu tỉ nên Δ=x2Δ=x2
Suy ra (b+x)(b−x)=4ac(b+x)(b−x)=4ac
Vì b,x cùng tính chẵn lẽ nên b+x chẵn;b-x chẵn
Ta xét các TH sau:
{b+x=ab−x=4c{b+x=ab−x=4c
mà b+x≥b−x⇒a≥4cb+x≥b−x⇒a≥4c nên c=1 (vì c lẻ )
Thay c=1 vào ta đc: {b=a2+2x=a2−2{b=a2+2x=a2−2
Thế vào ta tìm đc a=0(vô lý)
Xét {b+x=2acb−x=2{b+x=2acb−x=2
tương tự ta cũng có: 2ac≥2⇒ac≥1⇒a=1;c=12ac≥2⇒ac≥1⇒a=1;c=1
tính đc b=2 khi đó ¯¯¯¯¯¯¯¯abc=121=112abc¯=121=112 ko phải là số nguyên tố
Xét {b+x=2ab−x=2c{b+x=2ab−x=2c
Ta chứng minh đc a>c
Suy ra b=a+c
khi đó ¯¯¯¯¯¯¯¯abc=110a+11c⋮11abc¯=110a+11c⋮11 ko phải là số nguyên tố.
Vậy điều giả sử sai nên ta có đpcm
Chứng minh rằng nếu số abc là số nguyên tố thù pt sau không có nghiệm hữu tỉ ax^2 + bx + c = 0
Ta có:$\Delta =b^{2}-4ac$
Xét $\Delta \geq 0$
Giả sử pt đó có nghiệm hữu tỉ nên $\Delta =x^{2}$
Suy ra $(b+x)(b-x)=4ac$
Vì b,x cùng tính chẵn lẽ nên b+x chẵn;b-x chẵn
Ta xét các TH sau:
$\left\{\begin{matrix} b+x=a\\b-x=4c \end{matrix}\right.$
Mà $b+x\geq b-x\Rightarrow a\geq 4c$ nên c=1 (vì c lẻ )
Thay c=1 vào ta đc: $\left\{\begin{matrix} b=\frac{a}{2}+2\\ x=\frac{a}{2}-2 \end{matrix}\right.$
Thế vào ta tìm đc a=0(vô lý)
Xét $\left\{\begin{matrix} b+x=2ac\\b-x=2 \end{matrix}\right.$
Tương tự ta cũng có: $2ac\geq 2\Rightarrow ac\geq 1\Rightarrow a=1;c=1$
Tính được b=2 khi đó $\overline{abc}=121=11^{2}$ ko phải là số nguyên tố
Xét $\left\{\begin{matrix} b+x=2a\\b-x=2c \end{matrix}\right.$
Ta chứng minh đc a>c
Suy ra b=a+c
Khi đó $\overline{abc}=110a+11c\vdots 11$ ko phải là số nguyên tố.
Vậy điều giả sử sai nên ta có đpcm
cho đa thức P(x)=ax2+bx+c với a,b,c là các số nguyên và P(0),P(1)là các số lẻ . CMR P(x) không thể có nghiệm là số nguyên
Chứng minh mọi nghiệm hữu tỉ của pt sau đều nguyên: \(x^3+ax^2+bx-6=0\)
Tìm các giá trị của a,b thoả mãn pt đã cho để có 3 nghiệm hữu tỉ dương pb nhỏ hơn 6
1) Cho PT: \(x^2+mx+n=0\left(1\right)\) với m,n thuộc Z
a) CMR: Nếu PT(1) có nghiệm hữu tỉ thì nghiệm đó nguyên
b) Tìm nghiệm hữu tỉ của PT (1) nếu n=3
2) CMR: Nếu số \(\overline{abc}\) nguyên tố thì PT: \(ax^2+bx+c=0\) không có nghiệm hữu tỉ
3)Tìm m thuộc Z để nghiệm của PT \(mx^2-2\left(m-1\right)x+m-4=0\)là số hữu tỉ
4) Tìm nghiệm x, y thuộc Q, x> y thỏa mãn
\(\sqrt{x}-\sqrt{y}=\sqrt{2-\sqrt{3}}\)
Cho phương trình \(ax^2+bx+c=0\) có các hệ số a, b, c là các số nguyên lẻ. Chứng minh rằng nếu phương trình có nghiệm thì các nghiệm ấy không thể là số hữu tỉ.
BÀI TOÁN PHỤ: CHứng minh rằng số chính phương lẻ chia cho 8 dư 1.
Giải: Xét số chính phương lẻ là \(m^2\left(m\in Z\right)\)
Như vậy m là số lẻ, đặt \(m=2n+1\)
Ta có:
\(m^2=\left(2n+1\right)^2=4n^2+4n+1=4.n.\left(n+1\right)+1\)
Vì n(n+1) là tích 2 số nguyên liên tiếp nên chia hết cho 2
\(\Rightarrow4n\left(n+1\right) \) chia hết cho 8
\(\Rightarrow4.n.\left(n+1\right)+1\) chia 8 dư 1
Vậy ta có điều phải chứng minh.
Vì a lẻ nên \(a\ne0\), phương trình \(ax^2+bx+c=0\) là phương trình bậc hai.
Xét \(\Delta=b^2-4ac\): b lẻ, theo bài toán phụ có \(b^2=8k+1\left(k\in Z\right)\)
a,c lẻ \(\Rightarrow\) \(ac\) lẻ
Đặt \(ac=2l-1\left(l\in Z\right)\)
Do đó \(\Delta=b^2-4ac=8k+1-4.\left(2l-1\right)=8k+1-8l+4=8\left(k-l\right)+5 \)chia cho 8 dư 5, theo bài toán phụ trên ta có \(\Delta\) không phải số chính phương.
\(\Delta\) là số nguyên, không phải óố chính phương \(\Rightarrow\sqrt{\Delta}\) là số vô tỉ
Nghiệm của phương trình đã cho (nếu có) là: \(x=\frac{-b\pm\sqrt{\Delta}}{2a}\)
b,a\(\in Z\), \(\sqrt{\Delta}\) vô tỉ nên x là vô tỉ.
Vậy phương trình có nghiệm nếu có thì các nghiệm ấy không thể là số hữu tỉ.
ơng là phươngax2+bx+c=0
Bài này có sự liên quan giữa các số lẻ a;b;c không? ( không = khó )
ax^2 +bx +c = 0 (*)
(*) có nghiệm hữa tỷ <=> Δ = b^2 - 4ac là số chính phương lẻ
(vì 4ac chẵn và b lẻ)
Δ là số chính phương lẻ nên Δ chia 8 dư 1 (*)
với a, b , c là số nguyên lẻ nên có dạng:
a = 2m + 1; b = 2n +1; c = 2p + 1 ( m,n,p là số nguyên)
=> Δ = (2n +1)^2 - 4(2m+1)(2p+1)
= 4n^2 + 4n + 1 - 4(4mp + 2m + 2p + 1)
= 4n(n+1) - 8(mp + m + p) - 3 = 4n(n+1) - 8(mp + m + p) - 8 + 5
vì 4n(n+1) - 8(mp + m + p) - 8 chia hết cho 8 => Δ chia 8 dư 5 mâu thuẩn với (*)
=> đpcm.
-------------------------
chứng minh (*):
A = (2k+1)^2 = 4k^2 + 4k + 1 = 4k(k + 1) + 1
k(k + 1) là tích 2 số nguyên liêu tiếp chia hết cho 2
=> 4k(k + 1) chia hết cho 8
=> A chia 8 dư 1
Tìm các nghiệm của pt (ax^2+bx+c)(cx^2+bx+a)=0 biết a,b,c là các số hữu tỉ (a,c khác 0) và x=($\sqrt{2}$+1)^2 là một nghiệm của pt này