Cho các tập hợp sau A= \(\left\{x\in R|\left(x-2x^2\right)\left(x^2-3x+2\right)=0\right\}\) và B=\(\left\{n\in N|3< n\left(n+1\right)< 31\right\}\)
Tìm A \(\cap\) B
cho các tập hợp sau:
A={x\(\in\)R|(2x-\(x^2\))(2\(x^3\)-3x-2)=0};B={n\(\in N\)*|3<\(n^2\)<30}
A. \(A\cap B=\left\{2;4\right\}\)
B. \(A\cap B=\left\{2\right\}\)
C. \(A\cap B=\left\{4;5\right\}\)
D. \(A\cap B=\left\{3\right\}\)
(2x-x^2)(2x^3-3x-2)=0
=>x(2-x)(2x^3-3x-2)=0
=>x=0 hoặc 2-x=0 hoặc 2x^3-3x-2=0
=>\(x\in\left\{0;2;1,48\right\}\)
=>\(A=\left\{0;2;1,48\right\}\)
3<n^2<30
mà \(n\in Z^+\)
nên \(n\in\left\{2;3;4;5\right\}\)
=>B={2;3;4;5}
=>A giao B={2}
=>Chọn B
Viết mỗi tập hợp sau bằng cách liệt kê các phần tử:
a) A = { \(x\in R\) | \(\left(2x-x^2\right)\left(2x^2-3x-2\right)=0\)
b) B = { \(n\in N\) | \(3< n^2< 30\) }
c) C = { \(x\in Z\) | \(2x^2-75x-77=0\) }
\(A\cap B=\left\{1\right\}\)
\(A\cup B=\left\{-2;-1;0;1;2\right\}\)
Cho hai tập hợp \(A=\left\{\frac{3n}{n+1}n\in N,n< 4\right\}\)
\(B=\left\{x\in R,2x^3-x^2-6x=0\right\}\)
Tìm tất cả các tập X sao cho \(A\cap B\subset X\subset A\cup B\)
Cho \(E=\left\{x\in Z|\left|x\right|\le5\right\}\); \(A=\left\{x\in R|x^2+3x-4=0\right\}\);
\(B=\left\{x\in Z|(x-2)(x+1)(2x^2-x-3)=0\right\}\)
a) CM \(A\subset E\),\(B\subset E\)
b) Tìm \(E\backslash\left(A\cap B\right)\),\(E\backslash\left(A\cup B\right)\) rồi tìm quan hệ giữa hai tập hợp này.
\(E=\left\{-5;-4;-3;-2;-1;0;1;2;3;4;5\right\}\)
\(A=\left\{1;-4\right\}\)
\(B=\left\{2;-1\right\}\)
a) Với mọi x thuộc A đều thuộc E \(\Rightarrow A\subset E\)
Với mọi x thuộc B đều thuộc E \(\Rightarrow B\subset E\)
b) \(A\cap B=\varnothing\)
\(\Rightarrow E\backslash\left(A\cap B\right)=\left\{-5;-4;-3;-2;-1;0;1;2;3;4;5\right\}\)
\(A\cup B=\left\{-4;-1;1;2\right\}\)
\(\Rightarrow E\backslash\left(A\cup B\right)=\left\{-5;-3;-2;0;3;4;5\right\}\)
\(\Rightarrow E\backslash\left(A\cup B\right)\subset E\backslash\left(A\cap B\right)\)
Viết mỗi tập hợp sau bằng cách liệt kê các phần tử:
a) A = { \(x\in R\) | \(\left(2x^2-5x+3\right)\left(x^2-4x+3\right)=0\) }
b) B = { \(x\in R\) | \(\left(x^2-10x+21\right)\left(x^3-x\right)=0\) }
c) C = { \(x\in R\) | \(\left(6x^2-7x+1\right)\left(x^2-5x+6\right)\) = 0 }
d) D = { \(x\in Z\) | \(2x^2-5x+3=0\) }
e) E = { \(x\in N\) | \(\left\{{}\begin{matrix}x+3< 4+2x\\5x-3< 4x-1\end{matrix}\right.\) }
f) F = { \(x\in Z\) | \(\left|x+2\right|\le1\) }
g) G = { \(x\in N\) | x < 5 }
h) H = { \(x\in R\) | \(x^2+x+3=0\) }
`a)(2x^2-5x+3)(x^2-4x+3)=0`
`<=>[(2x^2-5x+3=0),(x^2-4x+3=0):}<=>[(x=3/2),(x=1),(x=3):}`
`=>A={3/2;1;3}`
`b)(x^2-10x+21)(x^3-x)=0`
`<=>[(x^2-10x+21=0),(x^3-x=0):}<=>[(x=7),(x=3),(x=0),(x=+-1):}`
`=>B={0;+-1;3;7}`
`c)(6x^2-7x+1)(x^2-5x+6)=0`
`<=>[(6x^2-7x+1=0),(x^2-5x+6=0):}<=>[(x=1),(x=1/6),(x=2),(x=3):}`
`=>C={1;1/6;2;3}`
`d)2x^2-5x+3=0<=>[(x=1),(x=3/2):}` Mà `x in Z`
`=>D={1}`
`e){(x+3 < 4+2x),(5x-3 < 4x-1):}<=>{(x > -1),(x < 2):}<=>-1 < x < 2`
Mà `x in N`
`=>E={0;1}`
`f)|x+2| <= 1<=>-1 <= x+2 <= 1<=>-3 <= x <= -1`
Mà `x in Z`
`=>F={-3;-2;-1}`
`g)x < 5` Mà `x in N`
`=>G={0;1;2;3;4}`
`h)x^2+x+3=0` (Vô nghiệm)
`=>H=\emptyset`.
Cho tập hợp: A=\(\left\{x\in R:-\dfrac{7}{4}< x\le-\dfrac{1}{2}\right\}\), B=\(\left\{x\in R:4< \left|x\right|< \dfrac{9}{2}\right\}\),C=\(\left\{x\in R:-\dfrac{5}{2}x+3< 3x-\dfrac{2}{3}\right\}\)
a. Dùng kí hiệu đoạn, khoảng, nửa khoảng để viết lại các tập hợp trên.
b. Xác định \(\left(A\cap B\right)\)\(\cap C\), \(\left(CrA\right)\)trừ B, \(\left(A\cup C\right)\)\(\cap\)(B trừ A)
a: A=(-7/4; -1/2]
\(B=\left(-\dfrac{9}{2};-4\right)\cup\left(4;\dfrac{9}{2}\right)\)
\(C=\left(\dfrac{2}{3};+\infty\right)\)
b: \(\left(A\cap B\right)\cap C=\varnothing\)
\(\left(A\cup C\right)\cap\left(B\A\right)\)
\(=(-\dfrac{7}{4};-\dfrac{1}{2}]\cup\left(\dfrac{2}{3};+\infty\right)\cap\left[\left(-\dfrac{9}{2};-4\right)\cup\left(4;\dfrac{9}{2}\right)\right]\)
\(=\left(4;\dfrac{9}{2}\right)\)
Cho tập hợp A=\(\left\{x\in R\left|x^4-16\left(x^2-1\right)=0\right|\right\}\) và B=\(\left\{x\in N|2x-9\le0\right\}\)
Tìm tập hợp x sao cho
a)X \(\subset B\)\A
b)A\B=X\(\cap\) A với X có đúng 2 phần tử
\(x^4-16\left(x^2-1\right)=0\Leftrightarrow x^4-16x^2+16=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2=8+4\sqrt{3}\\x^2=8-4\sqrt{3}\end{matrix}\right.\)
\(\Rightarrow A=\left\{-\sqrt{6}-\sqrt{2};\sqrt{2}-\sqrt{6};\sqrt{6}-\sqrt{2};\sqrt{2}+\sqrt{6}\right\}\)
\(2x\le9\Rightarrow x\le\frac{9}{2}\Rightarrow B=\left\{0;1;2;3;4\right\}\)
Bạn coi lại đề, tập hợp A nhìn rất có vấn đề :)
A =\(\left\{x\in N\backslash\left(2x-x^2\right)\left(2x^2-3x-2\right)=0\right\}\)
B =\(\left\{n\in N^+\backslash3x< n< 30\right\}\)
Xét A
\(\left(2x-x^2\right)\left(2x^2-3x-2\right)=0\)
=> \(\left[{}\begin{matrix}\left(2x-x^2\right)=0=>x=2;x=0\\\\\left(2x^2-3x-2\right)=0=>x=2;x=-\frac{1}{2}\end{matrix}\right.\)
Vì \(x\in N\) => \(A=\left\{2\right\}\)
Xét B
\(3x< n^2< 30\)
<=> \(6< n^2< 30\)
<=> \(\sqrt{6}< n< \sqrt{30}\)
=>\(\left[\sqrt{6};\sqrt{30}\right]\)
Vì \(B\in N^+\) => \(B=\left[3;5\right]\)
\(A\cap B=\varnothing\)