Tứ giác ABCD có AB=BC=CD, A+D=140 độ. Gọi O là giao điểm của 2 đường chéo. Tình AOd
Cho tứ giác ABCD có AB=BC=CD và BAD+ADC=140. Gọi O là giao điểm của 2 đường chéo AC và BD. Tính góc AOD
1.tứ giác abcd có ab=bc=cd, góc a+ góc d bằng 140 độ gọi O là giao điểm của 2 đường chéo. tính số đo góc AOD
2. Tứ giác abcd có các tia phân giác của các góc b và d song song với nhau. CMR góc A bằng góc C
Giúp em với ạ, chiều em hc rồi í ạ, em xin chân thành cảm ơn ạ❤💞
tứ giác abcd có ab=cb=cd và góc a + góc b = 140 gọi o là giao điểm hai đường chéo tính góc aod
tứ giác ABCD có AB=BC=CD,góc A+góc D=140o.Gọi O là giao điểm của hai đường chéo.Tính góc AOD
Cho tứ giác ABCD có AB=BC=CD; góc AOD =a(O là giao điểm của hai đường chéo). Các tia phân giác của góc A và D cắt nhau tại I. Tính góc AID theo a.
Cho hình thang ABCD cân (AB//CD). Gọi O là giao điểm 2 đường chéo. Gọi I là giao điểm 3 đường trung trực trong tam giác AOD. CMR: DI vuông góc với BC.
Cho tứ giác ABCD nội tiếp đường tròn (O) . Gọi E là giao điểm của 2 đường chéo ; Gọi A' , B' , C' , D' là hình chiếu của E trên AB , BC, CD , DA. Gọi M là giao điểm của A'B' và C'D'. Chứng minh A , E , M thẳng hàng
Bài 1: Cho hình thoi ABCD, O là giao điểm của hai đường chéo. Gọi E, F, G, H theo thứ tự là chân Các đường vuông góc kẻ từ O đến AB, BC, CD, DA. Tứ giác EFGH là hình gì? Vì sao?
Bài 2: Cho tam giác ABC vuông tại A (AB<AC). Gọi M là trung điểm BC. D, E lần luợt là hình chiếu của M lên AB và AC.
a) Chứng minh: ADME là hình chữ nhật.
b) Chứng minh: BDEM là hình bình hành.
c) Gọi O là giao điểm của BE và DM, I là trung điểm của EC. Chứng minh: AOMI là hình thang cân.
d) Vẽ đường cao AH của DABC. Tính số đo ∠DHE.
Bài 2:
a: Xét tứ giác ADME có
\(\widehat{ADM}=\widehat{AEM}=\widehat{EAD}=90^0\)
Do đó: ADME là hình chữ nhật
Cho tứ giác ABCD có các đường chéo AC và BD cắt nhau ở O và AD vg góc với AC , BD vg góc với BC. Gọi E là giao điểm của EO và CD. Gọi d là đường thẳng đi qua trung điểm EO và CD a) C/m : d là đường trung trực của đoạn AB
a. Dễ thấy AEM F là hình chữ nhật => AE = FM
Dễ thấy tg DFM vuông cân tại F => FM = DF
=> AE = DF => tg vuông ADE = tg vuông DCF ( AE = DF; AD = DC) => DE = CF
tg vuông ADE = tg vuông DCF => ^ADE = ^DCF => DE vuông góc CF (1) ( vì đã có AD vuông góc DC)
b) Tương tự câu a) dễ thấy AF = BE => tg vuông ABF = tg vuông BCE => ^ABF = ^BCE => BF vuông góc CE ( vì đã có AB vuông góc BC) (2)
Gọi H là giao điểm của BF và DE
Từ (1) ở câu a) và (2) => H là trực tâm của tg CEF
Mặt khác gọi N là giao điểm của BC và MF. dễ thấy CN = DF = AE: MN = EM = A F => tg vuông AEF = tg vuông CMN => ^AEF = ^MCN => CM vuông góc EF ( vì đã có CN vuông góc AE) => CM là đường cao thuộc đỉnh C của tg CE F => CM phải đi qua trực tâm H => 3 đường thẳng DE;BF,CM đồng quy tại H
c) Dễ thấy AE + EM = AE + EB = AB = không đổi
(AE - EM)^2 >=0 <=> AE^2 + EM^2 >= 2AE.EM <=> (AE + EM)^2 >=4AE.EM <=> [(AE + EM)/2]^2 >= AE.EM <=> AB^2/4 >=S(AEM F)
Vậy S(AEM F ) max khi AE = EM => M trùng tâm O của hình vuông ABCD
~~~~~~~~~~~ai đi ngang qua nhớ để lại k ~~~~~~~~~~~~~
~~~~~~~~~~~~ Chúc bạn sớm kiếm được nhiều điểm hỏi đáp ~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~ Và chúc các bạn trả lời câu hỏi này kiếm được nhiều k hơn ~~~~~~~~~~~~
a. Dễ thấy AEM F là hình chữ nhật => AE = FM
Dễ thấy tg DFM vuông cân tại F => FM = DF
=> AE = DF => tg vuông ADE = tg vuông DCF ( AE = DF; AD = DC) => DE = CF
tg vuông ADE = tg vuông DCF => ^ADE = ^DCF => DE vuông góc CF (1) ( vì đã có AD vuông góc DC)
b) Tương tự câu a) dễ thấy AF = BE => tg vuông ABF = tg vuông BCE => ^ABF = ^BCE => BF vuông góc CE ( vì đã có AB vuông góc BC) (2)
Gọi H là giao điểm của BF và DE
Từ (1) ở câu a) và (2) => H là trực tâm của tg CEF
Mặt khác gọi N là giao điểm của BC và MF. dễ thấy CN = DF = AE: MN = EM = A F => tg vuông AEF = tg vuông CMN => ^AEF = ^MCN => CM vuông góc EF ( vì đã có CN vuông góc AE) => CM là đường cao thuộc đỉnh C của tg CE F => CM phải đi qua trực tâm H => 3 đường thẳng DE;BF,CM đồng quy tại H
c) Dễ thấy AE + EM = AE + EB = AB = không đổi
(AE - EM)^2 >=0 <=> AE^2 + EM^2 >= 2AE.EM <=> (AE + EM)^2 >=4AE.EM <=> [(AE + EM)/2]^2 >= AE.EM <=> AB^2/4 >=S(AEM F)
Vậy S(AEM F ) max khi AE = EM => M trùng tâm O của hình vuông ABCD