Cho tứ giác ABCD có AB song song với CD và AB = CD
C/m : AD = BC và AD song song với BC
Cho tứ giác ABCD có AB=CD và AB,CD không song song với nhau. Chứng minh rằng đường thẳng đi qua trung điểm các cạnh BC và AD tạo với đường thẳng AB và CD những góc nhọn bằng nhau.
Tham khảo nha, tuy ko trùng đề lắm
Gọi trung điểm dường cheo AC, BD lần lượt là M, N
MN cắt AB, CD lần lượt ở I, K
Ta cần chứng minh góc NIB = góc MKC
Lấy H là trung điểm BC. Nối MH, NH.
Xét tam giac ABC có AM = MC ; CH = HB => MH là đường trung bình tam giác ABC => MH =AB/2 (1) và MH // AB => góc KMH = góc INH (2)
chung minh tuong tu ta có: NH = CD/2 (3)và NH // CD =>góc INH = góc MKC (4)
Mat khac từ (1)và (3) ta có NH = MH vì đều bằng một nửa AB và CD => tam giác MHN cân tại H => góc NMH = góc MNH =>góc KMH = góc INH (vì kể với 2 góc bằng nhau) (5)
Từ (3)(4)(5) => góc MKC = góc NIB (đpcm)
Cho tứ giác ABCD có AD=BC, 2 cạnh AD và BC không song song với nhau. M, N lần lượt là trung điểm của AB và CD. Đường thẳng AD cắt MN tại E, đường thẳng BC cắt MN tại F. Chứng minh rằng góc AEM=góc BFM.
Cho tứ giác ABCD có AB không song song với CD, BC < AD. Gọi E, F lần lượt là trung điểm của đường chéo AC và BD thỏa mãn EF= AD- BC \ 2
CMR : tứ giác ABCD là hình thang
Bạn ơi có đáp án câu này không mình xin với. Mình cũng đang học
Cho tứ giác ABCD có AB=CD( AB không song song với CD). Gọi E,F,G,H theo thứ tự là trung điểm của các cạnh BC, AC, AD, BD
1. Tứ giác EFGH là hình gì
2. Nếu AB vuông góc với CD và AB= 8cm. Tính diện tích tứ giác EFGH
3. Đường thẳng FH cắt AB tại M và CD tại N. Từ B kẻ đường thẳng song song với MN, cắt đường thẳng CD tại D. Chứng minh BN=MP
1: Xét ΔCAB có
F,E lần lượt là trung điểm của CA,CB
=>FE là đường trung bình của ΔCAB
=>FE//AB và \(FE=\dfrac{AB}{2}\)
Xét ΔDAB có
G,H lần lượt là trung điểm của DA,DB
=>GH là đường trung bình của ΔDAB
=>GH//AB và \(GH=\dfrac{AB}{2}\)
GH//AB
FE//AB
Do đó: GH//FE
Ta có: \(GH=\dfrac{AB}{2}\)
\(FE=\dfrac{AB}{2}\)
Do đó: GH=FE
Xét tứ giác EFGH có
GH=FE
GH//FE
Do đó: EFGH là hình bình hành
2: AB=CD
mà AB=8cm
nên CD=8cm
Xét ΔADC có
G,F lần lượt là trung điểm của AD,AC
=>GF là đường trung bình của ΔADC
=>GF//DC và \(GF=\dfrac{DC}{2}=4cm\)
GF//DC
DC\(\perp\)AB
Do đó: GF\(\perp\)AB
Ta có: GF\(\perp\)AB
AB//GH
Do đó: GH\(\perp\)GF
Xét hình bình hành GHEF có GH\(\perp\)GF
nên GHEF là hình chữ nhật
=>\(S_{GHEF}=GH\cdot GF=\dfrac{AB}{2}\cdot\dfrac{CD}{2}=4\cdot4=16\left(cm^2\right)\)
Cho tứ giác ABCD có AB=CD( AB không song song với CD). Gọi E,F,G,H theo thứ tự là trung điểm của các cạnh BC, AC, AD, BD
1. Tứ giác EFGH là hình gì
2. Nếu AB vuông góc với CD và AB= 8cm. Tính diện tích tứ giác EFGH
3. Đường thẳng FH cắt AB tại M và CD tại N. Từ B kẻ đường thẳng song song với MN, cắt đường thẳng CD tại D. Chứng minh BN=MP
giúp mình với ạ mình cần gấp 🙏
1: Xét ΔCAB có
F,E lần lượt là trung điểm của CA,CB
=>FE là đường trung bình của ΔCAB
=>FE//AB và FE=AB
2
Xét ΔDAB có
G,H lần lượt là trung điểm của DA,DB
=>GH là đường trung bình của ΔDAB
=>GH//AB và GH=AB
2
GH//AB
FE//AB
Do đó: GH//FE
Ta có: GH=AB2
F
E
=
A
B
2
Do đó: GH=FE
Xét tứ giác EFGH có
GH=FE
GH//FE
Do đó: EFGH là hình bình hành
2: AB=CD
mà AB=8cm
nên CD=8cm
Xét ΔADC có
G,F lần lượt là trung điểm của AD,AC
=>GF là đường trung bình của ΔADC
=>GF//DC và
G
F
=
D
C
2
=
4
c
m
GF//DC
DC
⊥
AB
Do đó: GF
⊥
AB
Ta có: GF
⊥
AB
AB//GH
Do đó: GH
⊥
GF
Xét hình bình hành GHEF có GH
⊥
GF
nên GHEF là hình chữ nhật
=>
S
G
H
E
F
=
G
H
⋅
G
F
=
A
B
2
⋅
C
D
2
=
4
⋅
4
=
16
(
c
m
2
)
Cho tứ giác ABCD có AD và BC cắt nhau tại M. Gọi IJ lần lượt là trung điểm AB và CD. Gọi PQ lần lượt là giao điểm của BC,AD và IJ. Qua A,B vẽ đường thẳng song song với CD cắt IJ tại E,F. a) Chứng minh BP/PC=QA/QD b) Cho MA=4cm, MB=5cm, AD=8cm, BC=10cm. Chứng minh tam giác MAB đồng dạng với tam giác MDC CẢM ƠN!❤
cho tứ giác ABCD từ một điểm M trên đường chó BD kẻ MP, MQ lần lượt song song với BC và AD (P\(\in\)CD , Q\(\in\) AB)
c/m \(\dfrac{MP}{BC}+\dfrac{MQ}{AD}=1\)
Xét $\triangle ABD$ có: $MQ//AD$ với $M∈BD;Q∈AB$
(định lí Ta-lét)
Xét $\triangle CBD$ có: $MP//BC$ với $M∈BD;P∈CB$
\(\Rightarrow\dfrac{MP}{BC}=\dfrac{DM}{BD}\) (định lí Ta-lét)
Nên \(\Rightarrow\dfrac{MQ}{AD}+\dfrac{MP}{BC}=\dfrac{BM}{BD}+\dfrac{DM}{BD}=\dfrac{BM+DM}{BD}=\dfrac{BD}{BD}=1\text{}\text{}\)
Cho tứ diện ABCD có AB vuông góc với CD, AB=CD=6. M là điểm thuộc canh BC sao cho MC=x.BC (0<x<1). Mặt phẳng (P) đi qua M và song song với AB và CD lần lượt cắt BC, DB, AD, AC tại M, N, P, Q. Diện tích lớn nhất S m a x của tứ giác MNPQ bằng bao nhiêu?
A. 9
B. 4,5
C. 36
D. 18
Cho tứ giác ABCD, AB không song song với CD; M, N lần lượt là trung điểm của BC, AD. Chứng minh \(MN=\dfrac{AB+CD}{2}\)
Đề sai rồi, phải là cm \(MN< \dfrac{AB+CD}{2}\)