Rút gọn
f) \(\frac{25^2.20^4}{5^{10}.4^5}\)
i) \(\frac{9^{15}.81^4}{27^8.3^{20}}\)
Rút gọn
f) \(\frac{25^2.20^4}{5^{10}.4^5}\)
g) \(\frac{16^{12}.8}{32^5.64^4}\)
h) \(\frac{2^{18}.9^4}{6^6.8^4}\)
f) \(\frac{25^2.20^4}{5^{10}.4^5}=\frac{\left(5^2\right)^2.\left(4.5\right)^4}{5^{10}.4^5}=\frac{5^4.5^4.4^4}{5^{10}.4^5}=\frac{5^8.4^4}{5^{10}.4^5}=\frac{1}{5^2.4}=\frac{1}{100}\)
g) \(\frac{16^{12}.8}{32^5.64^4}=\frac{\left(2^4\right)^{12}.2^3}{\left(2^5\right)^5.\left(2^6\right)^4}=\frac{2^{48}.2^3}{2^{25}.2^{24}}=\frac{2^{51}}{2^{49}}=2^2=4\)
h) \(\frac{2^{18}.9^4}{6^6.8^4}=\frac{2^{18}.\left(3^2\right)^4}{\left(2.3\right)^6.\left(2^3\right)^4}=\frac{2^{18}.3^8}{2^6.3^6.2^{12}}=\frac{2^{18}.3^8}{2^{18}.3^6}=3^2=9\)
\(\frac{1}{5}+\frac{4}{10}+\frac{9}{15}+\frac{16}{20}+\frac{25}{25}+\frac{36}{30}+\frac{49}{35}+\frac{64}{40}+\frac{81}{45}\)=?
\(\frac{1}{5}+\frac{4}{10}+...+\frac{81}{45}=\frac{1}{5}+\frac{2}{5}+\frac{3}{5}+...+\frac{9}{5}=\frac{1+2+3+...+9}{5}=\frac{45}{5}=9\)
1/5 + 4/10 + 9/15 + 16/20 + 25/25 + 36/30 + 49/35 + 64/40 + 81/45
=1/5 + 2/5 + 3/5 + 4/5 + 5/5 + 6/5 + 7/5 + 8/5 + 9/5
=45/5 = 9
a) Trong các số sau, những phân số nào biểu diễn số hữu tỉ \(\frac{{ - 5}}{9}\)?
\(\frac{{ - 10}}{{18}};\,\frac{{10}}{{18}};\,\frac{{15}}{{ - 27}};\, - \frac{{20}}{{36}};\,\frac{{ - 25}}{{27}}.\)
b) Tìm số đối của mỗi số sau: \(12;\,\frac{{ 4}}{9};\, - 0,375;\,\frac{0}{5};\,-2\frac{2}{5}.\)
a) Ta có:
\(\begin{array}{l}\frac{{ - 10}}{{18}} =\frac{{ - 10:2}}{{18:2}} = \frac{{ - 5}}{9};\,\,\,\\\frac{{10}}{{18}} = \frac{{10:2}}{{18:2}} =\frac{5}{9};\,\,\\\,\frac{{15}}{{ - 27}} =\frac{{15:(-3)}}{{ - 27:(-3)}} = \frac{{ - 5}}{9};\,\\ - \frac{{20}}{{36}} =- \frac{{20:4}}{{36:4}}= \frac{{ - 5}}{9}.\end{array}\)
Vậy những phân số nào biểu diễn số hữu tỉ \(\frac{{ - 5}}{9}\) là: \(\frac{{ - 10}}{{18}};\,\frac{{15}}{{ - 27}};\, - \frac{{20}}{{36}}.\)
b) Số đối của các số \(12;\,\frac{{ 4}}{9};\, - 0,375;\,\frac{0}{5};\,-2\frac{2}{5}\) lần lượt là: \( - 12;\,\frac{-4}{9};\,0,375;\,\frac{0}{5};\, 2\frac{2}{5}\).
Chứng minh rằng:\(\frac{1}{5}+\frac{1}{15}+\frac{1}{25}+....+\frac{1}{1985}< \frac{9}{20}\)
mk làm thế này đúng ko mọi người
Đặt \(A=\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+\frac{1}{9}+......+\frac{1}{243}\)
\(A=\frac{1}{3}+\left(\frac{1}{5}+\frac{1}{7}+\frac{1}{9}\right)+\left(\frac{1}{11}+\frac{1}{13}+\frac{1}{15}+....+\frac{1}{27}\right)+\left(\frac{1}{29}+\frac{1}{31}+\frac{1}{33}+....+\frac{1}{81}\right)+\left(\frac{1}{83}+\frac{1}{85}+\frac{1}{87}+.....+\frac{1}{243}\right)\)
\(=>A>\frac{1}{3}+\frac{1}{9}.3+\frac{1}{27}.9+\frac{1}{81}.27+\frac{1}{243}.81=\frac{1}{3.5}=\frac{5}{3}\)
\(=>A>\frac{5}{3}>\frac{5}{4}=>A< \frac{5}{4}\)
\(=>\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+....+\frac{1}{397}< \frac{5}{4}\)
\(=>1+\frac{1}{3}+\frac{1}{7}+....+\frac{1}{397}< \frac{5}{4}\)
\(=>\frac{1}{5}.\left(1+\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+....+\frac{1}{397}\right)< \frac{9}{4}.\frac{1}{5}\)
\(=>\frac{1}{5}+\frac{1}{15}+\frac{1}{25}+......+\frac{1}{1985}< \frac{9}{20}\)
rút gọn :
a) \(\frac{5^3.90.4^3}{25^2.3^2.2^{13}}\)
b) \(\frac{18.27+18.\left(-23\right)}{34.4-4.52}\)
c) \(\frac{15^2.16^4-15^3.16^3}{12^2.20^3-20^2.12^3}\)
d) \(\frac{2.3+4.6+14.21}{3.5+6.10+21.35}\)
a.
\(\frac{5^3\times90\times4^3}{25^2\times3^2\times2^{13}}=\frac{5^3\times5\times9\times2\times\left(2^2\right)^3}{\left(5^2\right)^2\times3^2\times2^{13}}=\frac{5^4\times3^2\times2\times2^6}{5^4\times3^2\times2^{13}}=\frac{1}{2^6}=\frac{1}{64}\)
b.
\(\frac{18\times27+18\times\left(-23\right)}{34\times4-4\times52}=\frac{18\times\left(27-23\right)}{4\times\left(34-52\right)}=\frac{18\times4}{4\times\left(-18\right)}=-1\)
c.
\(\frac{15^2\times16^4-15^3\times16^3}{12^2\times20^3-20^2\times12^3}=\frac{16^3\times15^2\times\left(16-15\right)}{12^2\times20^2\times\left(20-12\right)}=\frac{16\times\left(16\times15\right)^2}{8\times\left(20\times12\right)^2}=\frac{16\times240^2}{8\times240^2}=2\)
d.
\(\frac{2\times3+4\times6+14\times21}{3\times5+6\times10+21\times35}=\frac{2\times3\times\left(1+2\times2+7\times7\right)}{3\times5\times\left(1+2\times2+7\times7\right)}=\frac{2}{5}\)
Chúc bạn học tốt
a) \(\frac{5^3\cdot90\cdot4^3}{25^2\cdot3^2\cdot2^{13}}=\frac{5^3\cdot2\cdot3^2\cdot5\cdot2^6}{5^4\cdot3^2\cdot2^{13}}=\frac{1}{2^6}=\frac{1}{64}\)
b) \(\frac{18\cdot27+18\cdot\left(-23\right)}{34\cdot4-4\cdot52}=\frac{18\left(27-23\right)}{4\left(34-52\right)}=\frac{9\cdot4}{2\cdot\left(-18\right)}=\frac{3^2\cdot2^2}{2\cdot2\cdot3^2\cdot\left(-1\right)}=-1\)
c) \(\frac{15^2\cdot16^4-15^3\cdot16^3}{12^2\cdot20^3-20^2\cdot12^3}=\frac{15^2\cdot16^3\left(16-15\right)}{12^2\cdot20^2\left(20-12\right)}=\frac{15^2\cdot16^3}{12^2\cdot20^2\cdot8}=\frac{3^2\cdot5^2\cdot2^{12}}{2^4\cdot3^2\cdot2^4\cdot5^2\cdot2^3}=2\)
d) \(\frac{2\cdot3+4\cdot6+14\cdot21}{3\cdot5+6\cdot10+21\cdot35}=\frac{2\cdot3+2^2\cdot2\cdot3+2\cdot3\cdot7^2}{3\cdot5+2^2\cdot3\cdot5+3\cdot5\cdot7^2}=\frac{2\cdot3\left(1+2^2+7^2\right)}{3\cdot5\left(1+2^2+7^2\right)}=\frac{2}{5}\)
LŨY THỪA
Bài 1: Tính
\(1.\frac{16^2}{4^5}\) \(17.\frac{9^3}{81^4}\)
\(2.\frac{4^5}{8^3}\) \(18.\frac{8^4}{4^3}\)
\(3.\frac{16^6}{8^3}\) \(19.\frac{8^4}{2^3}\)
\(4.\frac{32^3}{16^5}\)
\(5.\frac{32^5}{64^6}\)
\(6.\frac{27^5}{9^4}\)
\(7.\frac{9^6}{27^5}\)
\(8.\frac{81^5}{9^6}\)
\(9.\frac{27^4}{81^5}\)
\(10.\frac{81^5}{27^6}\)
\(11.\frac{25^6}{125^3}\)
\(12.\frac{4^7}{8^3}\)
\(13.\frac{8^4}{16^3}\)
\(14.\frac{8^5}{64^3}\)
\(15.\frac{16^6}{8^4}\)
\(16.\frac{8^8}{4^6}\)
rút gọn
a) \(\frac{11^4.6-11^5}{11^4-11^5}\)
b ) \(\frac{9^8.3-3^{18}}{9^8.5+9^8.7}\)
c ) \(\frac{10^5-10^5.3}{10^5.11}\)
a.
\(\frac{11^4\times6-11^5}{11^4-11^5}=\frac{11^4\times\left(6-11\right)}{11^4\times\left(1-11\right)}=\frac{-5}{-10}=\frac{1}{2}\)
b.
\(\frac{9^8\times3-3^{18}}{9^8\times5+9^8\times7}=\frac{9^8\times3-\left(3^2\right)^9}{9^8\times\left(5+7\right)}=\frac{9^8\times3-9^9}{9^8\times12}=\frac{9^8\times\left(3-9\right)}{9^8\times12}=-\frac{6}{12}=-\frac{1}{2}\)
c.
\(\frac{10^5-10^5\times3}{10^5\times11}=\frac{10^5\times\left(1-3\right)}{10^5\times11}=-\frac{2}{11}\)
Chúc bạn học tốt
tính giá trị của biểu thức
a,\(\frac{126^7.54^4}{12^5.189^6}\)
b,\(\frac{81^{11}.3^{17}}{27^{10}.9^{15}}\)
c,\(\frac{5.4^{15}.9^9-4.3^{20}.8^9}{5.2^9.6^{19}-7.2^{99}.27^6}\)
d, \(\frac{\left(3.4.2^{16}\right)^2}{11.2^{13}.4^{11}-16^9}\)
e,\(\frac{4^69^5+6^9.120}{8^43^{12}-6^{11}}.3.\frac{1}{343}.81^2\frac{1}{3^2}\)
trả lời nhanh nha ít nhất là tối nay đó
tính giá trị của biểu thức
a,\(\frac{126^7.54^4}{12^5.189^6}\)
b,\(\frac{81^{11}.3^{17}}{27^{10}.9^{15}}\)
c,\(\frac{5.4^{15}.9^9-4.3^{20}.8^9}{5.2^9.6^{19}-7.2^{29}.27^6}\)
d, \(\frac{\left(3.4.2^{16}\right)^2}{11.2^{13}.4^{11}-16^9}\)
e,\(\frac{4^69^5+6^9.120}{8^43^{12}-6^{11}}.3.\frac{1}{343}.81^2\frac{1}{3^2}\)
trả lời nhanh nha ít nhất là tối nay đó
a) 378
b) 3
c) 2
d) 2
e) \(\frac{8748}{1715}\)
Mình thấy bài e) bạn có ghi thiếu ko vậy.81^2 x;: hay là cộng trừ vậy?