Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
THẮNG SANG CHẢNH
Xem chi tiết
Buddy
18 tháng 2 2021 lúc 9:23

#)Giải :

 

Giả sử cả A và B đều chia hết cho 5 

=> a - b chia hết cho 5 

=> 22n + 1 + 22n + 1 + 1 - (22n + 1 - 22n + 1 + 1) = 2.22n + 1 chia hết cho 5 

=> 22n + 1 chia hết cho 5 

Nhưng vì 22n + 1 có tận cùng là 0 và 5 nên điều này không thể xảy ra

=> Phải có ít nhất A(n) hoặc B(n) không chia hết cho 5, số còn lại chia hết cho 5

=> đpcm

undefined

cute
Xem chi tiết
Trần Tuấn Hoàng
15 tháng 2 2022 lúc 22:31

-Ta có: \(2^{4n}=16^n=\overline{...6}\)

\(\Rightarrow2^{4n}.4=\overline{...6}.4\)

\(\Rightarrow2^{4n+2}=\overline{...4}\)

\(A.B=\left(2^{2n+1}+2^{n+1}+1\right)\left(2^{2n+1}-2^{n+1}+1\right)\)

\(=\left[\left(2^{2n+1}+1\right)+2^{n+1}\right]\left[\left(2^{2n+1}+1\right)-2^{n-1}\right]\)

\(=\left(2^{2n+1}+1\right)^2-2^{2.\left(n+1\right)}\)

\(=2^{4n+2}+2^{2n+1}.2+1-2^{2n+2}\)

\(=2^{4n+2}+1=\overline{...4}+1=\overline{...5}⋮5\)

-Như vậy, thì \(A⋮5\) hay \(B⋮5\).

-Còn về hai số đó có thể cùng chia hết cho 5 không thì mình chưa làm được.

Trần Tuấn Hoàng
16 tháng 2 2022 lúc 9:02

-Chứng minh hai số đó không thể cùng chia hết cho 5:

-Vì \(\left(A.B\right)⋮5\) nên sẽ có 1 trong hai số chia hết cho 5. Vì A,B có vai trò giống nhau nên giả sử số đó là A.

-Ta chứng minh \(\left(A+B\right)\) không chia hết cho 5 thì \(B\) cũng không chia hết cho 5. 

\(A+B=\left(2^{2n+1}+2^{n+1}+1\right)+\left(2^{2n+1}-2^{n+1}+1\right)\)

\(=2.2^{2n+1}+2=2\left(2^{2n+1}+1\right)\)

-Ta có: \(2^{2n}=4^n\).

+Nếu \(n=2k\) thì \(4^n=4^{2k}=16^k=\overline{...6}\Rightarrow4^n.2+1=\overline{...2}+1=\overline{...3}\) không chia hết cho 5.

+Nếu \(n=2k+1\) thì \(4^n=4^{2k+1}=16^k.4=\overline{...6}.4=\overline{...4}\)

\(\Rightarrow4^n.2+1=\overline{...8}+1=\overline{...9}\).

\(\Rightarrow\) Với mọi giá trị của n thì \(4^n.2+1=2^{2n+1}+1\) không chia hết cho 5.

\(\Rightarrow2\left(2^{2n+1}+1\right)\) không chia hết cho 5 hay \(A+B\) không chia hết cho 5.

\(\Rightarrow B\) không chia hết cho 5.

-Vậy.................

Xem chi tiết
Hiếu Nguyễn
1 tháng 4 2022 lúc 9:41

lớp 5 học số mũ rồi à

Nguyễn Tùng
Xem chi tiết
minh anh phạm
11 tháng 7 lúc 12:07

bạn à :))) 3 năm rồi ấy

 

Trần Dần Toàn
Xem chi tiết
Edogawa Conan
Xem chi tiết
Akai Haruma
11 tháng 7 2021 lúc 23:45

Lời giải:

Với $k\in\mathbb{N}$.

Nếu $n=3k$ thì:

$2^{2n}+2^n+1=2^{6k}+2^{3k}+1=64^k+8^k+1$

$\equiv 1^k+1^k+1\equiv 3\pmod 7$ (loại)

Nếu $n=3k+1$ thì:

$2^{2n}+2^n+1=2^{6k+2}+2^{3k+1}+1$

$=4.64^k+2.8^k+1\equiv 4+2+1\equiv 7\equiv 0\pmod 7$

Nếu $n=3k+2$ thì:

$2^{2n}+2^n+1=2^{6k+4}+2^{3k+2}+1$

$=16.64^k+4.8^k+1\equiv 16+4+1\equiv 0\pmod 7$

Vậy chỉ cần $n$ không chia hết cho $3$ thì $2^{2n}+2^n+1\vdots 7$

 

Roronoa Zoro
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
12 tháng 5 2017 lúc 12:01

Chọn A

slyn
Xem chi tiết
ILoveMath
4 tháng 12 2021 lúc 15:47

\(2n^3+22n\\ =2n\left(n^2+11\right)\\ =2n\left(n^2-1+12\right)\\ =2n\left(n^2-1\right)+12.2n=2n\left(n-1\right)\left(n+1\right)+24n\)

Vì n-1, n, n+1 là 3 số nguyên liên tiếp nên có ít nhất 1 số chia hết cho 2, 1 số chia hết cho 3. Mà (2,3)=1\(\Rightarrow n\left(n+1\right)\left(n-1\right)⋮2.3=6\Rightarrow2n\left(n+1\right)\left(n-1\right)⋮6\forall n\in Z\)

\(24⋮6\Rightarrow24n⋮6\forall n\in Z\)

\(\Rightarrow2n\left(n-1\right)\left(n+1\right)+24n⋮6\forall n\in Z\)

\(\Rightarrow2n^3+22n⋮6\forall n\in Z\)

 

\(\)

Nguyễn Ngọc k10
Xem chi tiết
Nguyễn Lê Phước Thịnh
29 tháng 5 2023 lúc 14:08

a: \(=\dfrac{3}{4}\cdot\dfrac{4}{5}\cdot\dfrac{5}{6}\cdot x^{n-1+2n+1+1}\cdot y^{2n+1+n+1}=\dfrac{1}{2}x^{3n+1}y^{3n+2}\)

Hệ số: 1/2

Bậc: 6n+3

b: \(=\dfrac{6}{5}\cdot\dfrac{4}{2}\cdot\dfrac{2}{6}\cdot x^{3-n+4-n}\cdot y^{5-n+6-n}=\dfrac{4}{5}x^{7-2n}y^{11-2n}\)

Hệ số: 4/5

bậc: 18-4n

c: \(=\dfrac{4}{7}x^{2-n+2n-3+1}y^{1+n-1+1}=\dfrac{4}{7}x^{n-1}y^{n+1}\)

Hệ số: 4/7

Bậc: 2n

d: =4/7x^(2n+2)*y^(2n+2)

Hệ số: 4/7

Bậc: 4n+4