Cho tứ giác lồi ABCD
a. Tính các góc của tứ giác, biết số đo của các góc A,B,C,D tỉ lệ với 2;4;5;7
b.C/m AB+CD < AC+BD
c. Tìm điểm M trong tứ giác đó sao cho MA+ MB + MC +MD đạt giá trị nhỏ nhất
Cho tứ giác ABCD biết số đo của các góc A, B, C, D tỉ lệ thuận với 1,2,3,4.
Tính số đo của các góc trong tứ giác ABCD.
Tính số đo các góc của tứ giác ABCD. Biết rằng các góc A; B; C; D tỉ lệ với 6; 5; 3; 4.
ta có A;B;C;D tỉ lệ với 6;5;3;4
suy ra: A/6=B/5=C/3=D/4
Áp dụng dãy tỉ số bằng nhau :
A/6=B/5=C/3=D/4=A+B+C+D/6+5+3+4=360/18=20
suy ra A=20*6=120*
B=20*5=100*
C=20*3=60*
D=20*4=80*
vậy A=120*;B=100*;C=60*;D=80*
Bài 1: Cho tứ giác ABCD biết số đo của các góc A; B; C; D tỉ lệ thuận với 5; 8; 13 và 10.
a/ Tính số đo các góc của tứ giác ABCD
b/ Kéo dài hai cạnh AB và DC cắt nhau ở E, kéo dài hai cạnh AD và BC cắt nhau ở F. Hai tia phân giác của các góc AED và góc AFB cắt nhau ở O. Phân giác của góc AFB cắt các cạnh CD và AB tại M và N. Chứng minh O là trung điểm của đoạn MN.
Bài 1: Cho tứ giác ABCD biết số đo của các góc A; B; C; D tỉ lệ thuận với 5; 8; 13 và 10.
a/ Tính số đo các góc của tứ giác ABCD
b/ Kéo dài hai cạnh AB và DC cắt nhau ở E, kéo dài hai cạnh AD và BC cắt nhau ở F. Hai tia phân giác của các góc AED và góc AFB cắt nhau ở O. Phân giác của góc AFB cắt các cạnh CD và AB tại M và N. Chứng minh O là trung điểm của đoạn MN.
Cho tứ giác ABCD biết số đo của các góc A ^ ; B ^ ; C ^ ; D ^ tỉ lệ thuận với 4; 9; 7; 6. Khi đó số đo các góc A ^ ; B ^ ; C ^ ; D ^ lần lượt là :
A. 120 ° ; 90 ° ; 60 ° ; 30 °
B. 140 ° ; 105 ° ; 70 ° ; 35 °
C. 144 ° ; 108 ° ; 72 ° ; 36 °
D. Cả A, B, C đều sai
Đáp án cần chọn là: C
Vì A ^ ÷ B ^ ÷ C ^ ÷ D ^ = 4 ÷ 3 ÷ 2 ÷ 1 nên ta có
A 4 = B 3 = C 2 = D 1 = A + B + C + D 4 + 3 + 2 + 1 = A + B + C + D 10
( tính chất tỉ lệ thức )
Mà A ^ + B ^ + C ^ + D ^ = 360 ° nên ta có
A 4 = B 3 = C 2 = D 1 = A + B + C + D 10 = 360 0 10 = 36 0
⇒ A ^ = 4 × 36 ° = 144 ° ; B ^ = 3 × 36 ° = 108 ° ; C ^ = 2 × 36 ° = 72 ° ; D ^ = 1 × 36 ° = 36 °
Cho tứ giác ABCD biết số đo của các góc A ^ ; B ^ ; C ^ ; D ^ tỉ lệ thuận với 4; 3; 5; 6. Khi đó số đo các góc A ^ ; B ^ ; C ^ ; D ^ lần lượt là:
A. 80 ° ; 60 ° ; 100 ° ; 120 °
B. 90 ° ; 40 ° ; 70 ° ; 60 °
C. 60 ° ; 80 ° ; 100 ° ; 120 °
D. 60 ° ; 80 ° ; 120 ° ; 100 °
Đáp án cần chọn là: A
Vì số đo của các góc A ^ ; B ^ ; C ^ ; D ^ tỉ lệ thuận với 4; 3; 5; 6 nên ta có:
A 4 = B 3 = C 5 = D 6 = A + B + C + D 4 + 3 + 5 + 6 = A + B + C + D 18
( tính chất dãy tỉ số bằng nhau )
Mà A ^ + B ^ + C ^ + D ^ = 360 ° nên ta có
A 4 = B 3 = C 5 = D 6 = A + B + C + D 18 = 360 0 18 = 20 0
⇒ A ^ = 4 × 20 ° = 80 ° ; B ^ = 3 × 20 ° = 60 ° C ^ = 5 × 20 ° = 100 ° ; D ^ = 6 × 20 ° = 120 °
Nên số đo các góc A ^ ; B ^ ; C ^ ; D ^ lần lượt là 80 ° ; 60 ° ; 100 ° ; 120 °
Cho tứ giác A,B,C,D có số đo của các góc A,B,C,D lần lượt tỉ lệ với 1,2,3,4. CMR
a) Tứ giác ABCD là hình thang
b)2 tia phân giác góc A và góc D vuông góc với nhau, 2 tia phân giác góc B và C vuông góc với nhau
a) Xét tứ giác ABCD có
\(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^0\)(Định lí tổng bốn góc trong một tứ giác)
mà \(\dfrac{\widehat{A}}{1}=\dfrac{\widehat{B}}{2}=\dfrac{\widehat{C}}{3}=\dfrac{\widehat{D}}{4}\)
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{\widehat{A}}{1}=\dfrac{\widehat{B}}{2}=\dfrac{\widehat{C}}{3}=\dfrac{\widehat{D}}{4}=\dfrac{\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}}{1+2+3+4}=\dfrac{360^0}{10}=36^0\)
Do đó: \(\widehat{A}=36^0;\widehat{B}=72^0;\widehat{C}=108^0;\widehat{D}=144^0\)
Ta có: \(\widehat{B}+\widehat{C}=180^0\)
mà hai góc này là hai góc trong cùng phía
nên AB//CD(dấu hiệu nhận biết hai đường thẳng song song)
hay ABCD là hình thang
:Bài 1 : Cho tứ giác ABCD biết số đo của các góc A; B; C; D tỉ lệ thuận với 5; 8; 13 và 10.
a/ Tính số đo các góc của tứ giác ABCD
b/ Kéo dài hai cạnh AB và DC cắt nhau ở E, kéo dài hai cạnh AD và BC cắtnhau ở F. Hai tia phân giác của các góc AED và góc AFB cắt nhau ở O. Phân giáccủa góc AFB cắt các cạnh CD và AB tại M và N. Chứng minh O là trung điểm củađoạn MN
a: Gọi số đo các góc A,B,C,D lần lượt là a,b,c,d
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{5}=\dfrac{b}{8}=\dfrac{c}{13}=\dfrac{d}{10}=\dfrac{a+b+c+d}{5+8+13+10}=\dfrac{360}{36}=10\)
Do đó: a=50; b=80; c=130; d=100
Cho tứ giác lồi ABCD có góc A-góc B = góc B-góc C = góc C-góc D = 10 độ.. Tính số đo mỗi góc của tứ giác.
Gọi số đo góc D là xo thì \(\widehat{C}=\left(x+10\right)^o;\widehat{B}=\left(x+20\right)^o;\widehat{A}=\left(x+30\right)^o\)
Do tổng các góc trong tứ giác bằng 360o nên ta có phương trình:
x + x + 10 + x + 20 + x + 30 = 360
\(\Rightarrow x=75\)
Vậy \(\widehat{D}=75^o,\) từ đó suy ra các góc còn lại.