Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đặng Nguyễn Khánh Uyên
Xem chi tiết
ngonhuminh
19 tháng 1 2017 lúc 21:05

f(0)=-4/10

a/b=-4/10=-2/5

f(1)=-6/26=-3/13=(a+1)/(b+1)

5a=-2b

a/-2=b/5=(a+b)/3

13a+13=-3b-3

15a=-6b

26a=-6b-6

11a=-6

a+b=-3/2.a=3/2.6/11=9/11

a+b=9/11

Lê Vương Kim Anh
Xem chi tiết
Đặng Nguyễn Khánh Uyên
Xem chi tiết
Pé Jin
11 tháng 2 2017 lúc 20:58

Phân tích phương trình:

\(\frac{x^3+x^2-4\cdot x-4}{x^3+8\cdot x^2+17\cdot x+10}=\frac{x^2\cdot\left(x+1\right)-4\cdot\left(x+1\right)}{x^2\cdot\left(x+1\right)+7\cdot x\cdot\left(x+1\right)+10\cdot\left(x+1\right)}\)

\(=\frac{\left(x+1\right)\cdot\left(x^2-4\right)}{\left(x+1\right)\cdot\left(x^2+7\cdot x+10\right)}\)

\(=\frac{\left(x+1\right)\cdot\left(x+2\right)\cdot\left(x-2\right)}{\left(x+1\right)\cdot\left(x+2\right)\cdot\left(x+5\right)}=\frac{x-2}{x+5}\)

Vậy \(a=-2;b=5\)

Nguyễn Thị Cẩm Nhung
Xem chi tiết
Phạm Tuấn Đạt
4 tháng 12 2018 lúc 17:53

\(\frac{x^3+x^2-4x-4}{x^3+8x^2+17x+10}\)

\(=\frac{x^2\left(x+1\right)-4\left(x+1\right)}{x^3+x^2+7x^2+7x+10x+10}\)

\(=\frac{\left(x^2-4\right)\left(x+1\right)}{\left(x+1\right)\left(x^2+7x+10\right)}\)

\(=\frac{x^2-4}{x^2+7x+10}\)

\(=\frac{x^2-4}{x^2+5x+2x+10}\)

\(=\frac{\left(x-2\right)\left(x+2\right)}{x\left(x+5\right)+2\left(x+5\right)}\)

\(=\frac{x-2}{x+5}\)

Hoàng Ninh
Xem chi tiết
tth_new
27 tháng 10 2019 lúc 13:33

a) Theo mình thì chỉ min thôi nhé!

\(A=\frac{8x^2-1}{4x^2+1}+1+11=\frac{12x^2}{4x^2+1}+11\ge11\)

b)Bạn rút gọn lại giùm mìn, lười quy đồng lắm:(

Khách vãng lai đã xóa
Trịnh Đức Thịnh
Xem chi tiết
Dũng Lê
Xem chi tiết
Nguyễn Mạnh Trung
29 tháng 1 2016 lúc 18:46

434

Nguyễn Thành Trung
7 tháng 10 2016 lúc 23:02

hình như bằng 434

Nguyễn Thành Trung
9 tháng 10 2016 lúc 22:05

434

Kaijo
Xem chi tiết
Linh Nhi
9 tháng 5 2020 lúc 21:13

a,\(\frac{3}{1-4x}=\frac{2}{4x+1}-\frac{3+6x}{16x^2-1}\)

ĐKXĐ: x≠1/4, x≠-1/4

\(-\frac{3}{4x-1}=\frac{2}{4x+1}-\frac{3+6x}{16x^2-1}\)

\(\frac{-3\left(4x+1\right)}{\left(4x-1\right)\left(4x+1\right)}=\frac{2\left(4x-1\right)}{\left(4x+1\right)\left(4x-1\right)}-\frac{3+6x}{16x^2-1}\)

⇒-12x-3=8x-2-3-6x

⇔8x-6x+12x=-3+2+3

⇔14x=2

⇔x=1/7(tmđk)

Vậy phương trình có nghiệm là x=1/7

b, \(\frac{5-x}{4x^2-8x}+\frac{7}{8x}=\frac{x-1}{2x\left(x-2\right)}+\frac{1}{8x-16}\) (2)

ĐKXĐ: x≠0, x≠2

(2)⇔\(\frac{2\left(5-x\right)}{2.4x\left(x-2\right)}+\frac{7\left(x-2\right)}{8x\left(x-2\right)}=\frac{4.\left(x-1\right)}{4.2x\left(x-2\right)}+\frac{x}{8.x\left(x-2\right)}\)

⇒10-2x+7x-14=4x-4+x

⇔-2x+7x-4x-x=-4-10+14

⇔0x=0

⇔ x∈R

Vậy phương trình có nghiệm là x∈R và x≠0, x≠2

c, \(\frac{x+1}{x^2+x+1}-\frac{x-1}{x^2-x+1}=\frac{3}{x\left(x^4+x^2+1\right)}\) (3)

ĐKXĐ: x≠0

(3)⇒x(x+1)(x2-x+1)-x(x-1)(x2+x+1)=3

⇔x4+x-x4+x=3

⇔2x=3

⇔x=3/2(tmđk)

Vậy phương trình có nghiệm là x=3/2

Miamoto Shizuka
Xem chi tiết
Miamoto Shizuka
11 tháng 12 2016 lúc 9:03

Tìm A

Giúp mình với!!! ~_~