Given that\(\frac{x^3+x^2-4x-4}{x^3+8x^2+17x+10}=\frac{x+a}{x+b}\) .Evaluate \(a+b\)
Cho \(\frac{x^3+x^2-4x-4}{x^3+8x^2+17x+10}=\frac{x+a}{x+b}\). Tìm a+b=?
Ai nhanh được tick nhé
f(0)=-4/10
a/b=-4/10=-2/5
f(1)=-6/26=-3/13=(a+1)/(b+1)
5a=-2b
a/-2=b/5=(a+b)/3
13a+13=-3b-3
15a=-6b
26a=-6b-6
11a=-6
a+b=-3/2.a=3/2.6/11=9/11
a+b=9/11
Rút gọn phân thức
a) \(\frac{x^3+3x^2-4}{x^3-3x+2}\)
b) \(\frac{x^3+^2-4x-4}{x^3+8x^2+17x+10}\)
Cho \(\frac{x^3+x^2-4x-4}{x^3+8x^2+17x+10}=\frac{x+a}{x+b}\) Tính \(a+b=?\)
Giúp mik với! Ai nhanh được tick!
Phân tích phương trình:
\(\frac{x^3+x^2-4\cdot x-4}{x^3+8\cdot x^2+17\cdot x+10}=\frac{x^2\cdot\left(x+1\right)-4\cdot\left(x+1\right)}{x^2\cdot\left(x+1\right)+7\cdot x\cdot\left(x+1\right)+10\cdot\left(x+1\right)}\)
\(=\frac{\left(x+1\right)\cdot\left(x^2-4\right)}{\left(x+1\right)\cdot\left(x^2+7\cdot x+10\right)}\)
\(=\frac{\left(x+1\right)\cdot\left(x+2\right)\cdot\left(x-2\right)}{\left(x+1\right)\cdot\left(x+2\right)\cdot\left(x+5\right)}=\frac{x-2}{x+5}\)
Vậy \(a=-2;b=5\)
rút gọn
\(\frac{x^3+x^2-4x-4}{x^3+8x^2+17x+10}\)
\(\frac{x^3+x^2-4x-4}{x^3+8x^2+17x+10}\)
\(=\frac{x^2\left(x+1\right)-4\left(x+1\right)}{x^3+x^2+7x^2+7x+10x+10}\)
\(=\frac{\left(x^2-4\right)\left(x+1\right)}{\left(x+1\right)\left(x^2+7x+10\right)}\)
\(=\frac{x^2-4}{x^2+7x+10}\)
\(=\frac{x^2-4}{x^2+5x+2x+10}\)
\(=\frac{\left(x-2\right)\left(x+2\right)}{x\left(x+5\right)+2\left(x+5\right)}\)
\(=\frac{x-2}{x+5}\)
Tìm giá trị lớn nhất của biểu thức:
a) \(A=\frac{8x^2-1}{4x^2+1}+12\)
b) \(B=\left(\frac{x^3+8}{x^3-8}.\frac{4x^2+8x+16}{x^2-4}-\frac{4x}{x-2}\right):\frac{-16}{x^4-6x^3+12x^2-8x}\)
a) Theo mình thì chỉ min thôi nhé!
\(A=\frac{8x^2-1}{4x^2+1}+1+11=\frac{12x^2}{4x^2+1}+11\ge11\)
b)Bạn rút gọn lại giùm mìn, lười quy đồng lắm:(
Giải phương trình
a) \(\frac{4}{20-6x-2x^2}\)+ \(\frac{x^2+4x}{x^2+5x}-\frac{x+3}{2-x}+3=0\)
b)\(\frac{x+5}{x^2-5x}-\frac{x-5}{2x^2-10x}+10=\frac{x+25}{2x^2-50}\)
c) \(\frac{7}{8x}+\frac{5-x}{4x^2-8x}=\frac{x-1}{2x.\left(x-2\right)}+\frac{1}{8x-16}\)
c) \(\frac{7}{8x}+\frac{5-x}{4x^2-8x}=\frac{x-1}{2x.\left(x-2\right)}+\frac{1}{8x-16}\)
Giải phương trình
a) \(\frac{4}{20-6x-2x^2}\)+ \(\frac{x^2+4x}{x^2+5x}-\frac{x+3}{2-x}+3=0\)
b)\(\frac{x+5}{x^2-5x}-\frac{x-5}{2x^2-10x}+10=\frac{x+25}{2x^2-50}\)
c) \(\frac{7}{8x}+\frac{5-x}{4x^2-8x}=\frac{x-1}{2x.\left(x-2\right)}+\frac{1}{8x-16}\)
1,Giải PT
a,\(\frac{3}{1-4x}=\frac{2}{4x+1}-\frac{3+6x}{16x^2-1}\)
b,\(\frac{5-x}{4x^2-8x}+\frac{7}{8x}=\frac{x-1}{2x\left(x-2\right)}+\frac{1}{8x-16}\)
c,\(\frac{x+1}{x^2+x+1}-\frac{x-1}{x^2-x+1}=\frac{3}{x\left(x^4+x^2+1\right)}\)
a,\(\frac{3}{1-4x}=\frac{2}{4x+1}-\frac{3+6x}{16x^2-1}\)
ĐKXĐ: x≠1/4, x≠-1/4
⇔\(-\frac{3}{4x-1}=\frac{2}{4x+1}-\frac{3+6x}{16x^2-1}\)
⇔\(\frac{-3\left(4x+1\right)}{\left(4x-1\right)\left(4x+1\right)}=\frac{2\left(4x-1\right)}{\left(4x+1\right)\left(4x-1\right)}-\frac{3+6x}{16x^2-1}\)
⇒-12x-3=8x-2-3-6x
⇔8x-6x+12x=-3+2+3
⇔14x=2
⇔x=1/7(tmđk)
Vậy phương trình có nghiệm là x=1/7
b, \(\frac{5-x}{4x^2-8x}+\frac{7}{8x}=\frac{x-1}{2x\left(x-2\right)}+\frac{1}{8x-16}\) (2)
ĐKXĐ: x≠0, x≠2
(2)⇔\(\frac{2\left(5-x\right)}{2.4x\left(x-2\right)}+\frac{7\left(x-2\right)}{8x\left(x-2\right)}=\frac{4.\left(x-1\right)}{4.2x\left(x-2\right)}+\frac{x}{8.x\left(x-2\right)}\)
⇒10-2x+7x-14=4x-4+x
⇔-2x+7x-4x-x=-4-10+14
⇔0x=0
⇔ x∈R
Vậy phương trình có nghiệm là x∈R và x≠0, x≠2
c, \(\frac{x+1}{x^2+x+1}-\frac{x-1}{x^2-x+1}=\frac{3}{x\left(x^4+x^2+1\right)}\) (3)
ĐKXĐ: x≠0
(3)⇒x(x+1)(x2-x+1)-x(x-1)(x2+x+1)=3
⇔x4+x-x4+x=3
⇔2x=3
⇔x=3/2(tmđk)
Vậy phương trình có nghiệm là x=3/2
given that x^3-x=7. evaluate A=x^6-2x^4+x^3+x^2-x