Những câu hỏi liên quan
Park Ji Min
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
5 tháng 7 2017 lúc 10:47

Ta có : x2 - 4x + y2 + 2y + 5 = 0

<=> (x2 - 4x + 4) + (y2 + 2y + 1) = 0

<=> (x - 2)2 + (y + 1)2 = 0

Mà (x - 2)2 \(\ge0\forall x\)

     (y + 1)2 \(\ge0\forall x\)

Nên \(\orbr{\begin{cases}\left(x-2\right)^2=0\\\left(y+1\right)^2=0\end{cases}}\) 

\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\y+1=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=2\\y=-0\end{cases}}\)

Bình luận (0)
Park Ji Min
6 tháng 7 2017 lúc 11:49

còn 2 bài nữa giúp mik đi

Bình luận (0)
l҉o҉n҉g҉ d҉z҉
12 tháng 8 2020 lúc 21:45

Ok bạn :>

b) x2 + 2y2 + 2xy - 2y + 1 = 0

<=> ( x2 + 2xy + y2 ) + ( y2 - 2y + 1 ) = 0

<=> ( x + y )2 + ( y - 1 )2 = 0

Ta có : \(\hept{\begin{cases}\left(x+y\right)^2\ge0\forall x,y\\\left(y-1\right)^2\ge0\forall y\end{cases}}\Rightarrow\left(x+y\right)^2+\left(y-1\right)^2\ge0\forall x,y\)

Dấu " = " xảy ra <=> \(\hept{\begin{cases}x+y=0\\y-1=0\end{cases}}\Rightarrow\hept{\begin{cases}x+y=0\\y=1\end{cases}}\Rightarrow\hept{\begin{cases}x=-1\\y=1\end{cases}}\)

Vậy giá trị của biểu thức = 0 khi x = -1 ; y = 1

c) x2 + 2y2 + 2xy = 2y - 2

<=> x2 + 2y2 + 2xy - 2y + 1 = -1

<=> ( x2 + 2xy + y2 ) + ( y2 - 2y + 1 ) = -1

<=> ( x + y )2 + ( y - 1 )2 = -1 (*)

Ta có : \(\hept{\begin{cases}\left(x+y\right)^2\ge0\forall x,y\\\left(y-1\right)^2\ge0\forall y\end{cases}}\Rightarrow\left(x+y\right)^2+\left(y-1\right)^2\ge0\forall x,y\)

mà -1 < 0

=> (*) sai

=> Không có giá trị x, y thỏa mãn

Bình luận (0)
 Khách vãng lai đã xóa
Lê Ngọc Linh
Xem chi tiết
FL.Hermit
11 tháng 8 2020 lúc 16:26

Mình làm câu đầu tượng trưng thui nhé, 2 câu sau tương tự vậy !!!!!!

a) pt <=> \(x^2-2xy+2y^2-2x-2y+5=0\)

<=> \(\left(x-y-1\right)^2+y^2-4y+4=0\)

<=> \(\left(x-y-1\right)^2+\left(y-2\right)^2=0\)    (1) 

TA LUÔN CÓ: \(\left(x-y-1\right)^2;\left(y-2\right)^2\ge0\forall x;y\)

=> \(\left(x-y-1\right)^2+\left(y-2\right)^2\ge0\)      (2)

TỪ (1) VÀ (2) => DẤU "=" SẼ PHẢI XẢY RA <=> \(\hept{\begin{cases}\left(x-y-1\right)^2=0\\\left(y-2\right)^2=0\end{cases}}\)

<=> \(\hept{\begin{cases}x=3\\y=2\end{cases}}\)

VẬY \(\left(x;y\right)=\left(3;2\right)\)

Bình luận (0)
 Khách vãng lai đã xóa
Nguyễn Quý Cảnh
Xem chi tiết
Yen Nhi
29 tháng 3 2022 lúc 22:32

`Answer:`

undefined

Bình luận (0)
 Khách vãng lai đã xóa

\(a)\left(-3x^2y-2xy^2+6\right)+\left(-x^2y+5xy^2-1\right)\)

\(=-3x^2y-2xy^2+6+-x^2y+5xy^2-1\)

\(=\left(-3x^2y-x^2y\right)+\left(-2xy^2+5xy^2\right)+\left(6-1\right)\)

\(=-4x^2y+3xy^2+5\)

\(b)\left(1,6x^3-3,8x^2y\right)+\left(-2,2x^2y-1,6x^3+0,5xy^2\right)\)

\(=1,6x^3-3,8x^2y+-2,2x^2y-1,6x^3+0,5xy^2\)

\(=\left(1,6x^3-1,6x^3\right)+\left(-3,8x^2y+-2,2x^2y\right)+0,5xy^2\)

\(=-6x^2y+0,5xy^2\)

\(c)\left(6,7xy^2-2,7xy+5y^2\right)-\left(1,3xy-3,3xy^2+5y^2\right)\)

\(=6,7xy^2-2,7xy+5y^2-1,3xy+3,3xy^2-5y^2\)

\(=\left(6,7xy^2+3,3xy^2\right)+\left(-2,7xy-1,3xy\right)+\left(5y^2-5y^2\right)\)

\(=10xy^2+-4xy\)

\(=10xy^2-4xy\)

\(d)\left(3x^2-2xy+y^2\right)+\left(x^2-xy+2y^2\right)-\left(4x^2-y^2\right)\)

\(=3x^2-2xy+y^2+x^2-xy+2y^2-4x^2+y^2\)

\(=\left(3x^2+x^2-4x^2\right)+\left(-2xy-xy\right)+\left(y^2+2y^2+y^2\right)\)

\(=-3xy+4y^2\)

\(e)\left(x^2+y^2-2xy\right)-\left(x^2+y^2+2xy\right)+\left(4xy-1\right)\)

\(=x^2+y^2-2xy-x^2-y^2-2xy+4xy-1\)

\(=\left(x^2-x^2\right)+\left(y^2-y^2\right)+\left(-2xy-2xy+4xy\right)-1\)

\(=-1\)

Bình luận (0)
 Khách vãng lai đã xóa
Đặng Bảo Diệp
Xem chi tiết
☆Châuuu~~~(๑╹ω╹๑ )☆
16 tháng 2 2022 lúc 16:07

\(=2.\left(-1\right)^2.2+4.\left(-1\right)^3.2^3+2.\left(-1\right).2^2\\ =4+\left(-32\right)+\left(-8\right)=\left(-36\right)\)

Bình luận (0)
ILoveMath
16 tháng 2 2022 lúc 16:08

Thay x=-1, y=2 vào B ta có:
\(B=2x^2y+4x^3y^3+2xy^2\\ =2.\left(-1\right)^2.2+4.\left(-1\right)^3.2^3+2.\left(-1\right).2^2\\ =4-32-8\\ =-36\)

Bình luận (0)
Tears
Xem chi tiết
Tears
17 tháng 6 2018 lúc 14:25

Giúp mình với huhu

Bình luận (0)
Đỗ Kiều My
17 tháng 6 2018 lúc 14:36

a)X - 4X +4 +Y2 + 2Y+1=0

<=> ( X - 2)2 +( Y+1)2

b) X2 +2XY+Y2 +Y2-2Y+1

<=>( X+ Y )2+(Y-1)2

Phần c hình như sai đề

Bình luận (0)
Khổng Minh Ái Châu
Xem chi tiết
Nguyễn Thị Thương Hoài
25 tháng 6 2023 lúc 23:32

a, (3 - \(x\))(4y + 1) = 20

   Ư(20) = { -20; -10; -5; -4; -2; -1; 1; 2; 4; 5; 10; 20}

Lập bảng ta có:

\(3-x\) -20 -10 -5 -4 -2 -1 1 2 4 5 10 20
\(x\) 23  13 8 7 5 4 2 1 -1 -2 -7 -17
4\(y\) + 1 -1 -2 -4 -5 -10 -20 20 10 5 4 2 1
\(y\) -1/2 -3/4 -5/4 -6/4 -11/4 -21/4 19/4 9/4 1 3/4 1/4 0

Vậy các cặp \(x;y\) nguyên thỏa mãn đề bài là:

(\(x;y\)) =(-1; 1); (-17; 0)

 

 

Bình luận (0)
Nguyễn Thị Thương Hoài
25 tháng 6 2023 lúc 23:46

b, \(x\left(y+2\right)\)+ 2\(y\) = 6

    \(x\) = \(\dfrac{6-2y}{y+2}\)

\(x\in\) Z ⇔ 6 - \(2y⋮\) \(y\) + 2 ⇒-(2y + 4) +10 ⋮ \(y\) + 2 ⇒ -2(\(y\)+2) +10 ⋮ \(y\)+2

⇒ 10 ⋮ \(y\) + 2

Ư(10) = { -10; -5; -2; -1; 1; 2; 5; 10}

Lập bảng ta có:

\(y+2\) -10 -5 -2 -1 1 2 5 10
\(y\) -12 -7 -4 -3 -1 0 3 8
\(x=\) \(\dfrac{6-2y}{y+2}\) -3 -4 -7 -12 8 3 0 -1

 Theo bảng trên ta có các cặp \(x;y\)

 nguyên thỏa mãn đề bài lần lượt là:

(\(x;y\)    ) =(-3; -12); (-4; -7); (-12; -3); (8; -1); (3; 0); (0;3 (-1; 8)                           

 

Bình luận (0)
Như Quỳnh Phạm
Xem chi tiết
Edogawa Conan
6 tháng 9 2021 lúc 22:49

a) x2+y2-4x+4y+8=0

⇔ (x-2)2+(y+2)2=0

\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\y+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-2\end{matrix}\right.\)

b)5x2-4xy+y2=0

⇔ x2+(2x-y)2=0

\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\2x-y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)

c)x2+2y2+z2-2xy-2y-4z+5=0

⇔ (x-y)2+(y-1)2+(z-2)2=0

\(\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\y-1=0\\z-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y=1\\z=2\end{matrix}\right.\)

Bình luận (0)
Nguyễn Lê Phước Thịnh
6 tháng 9 2021 lúc 22:51

b: Ta có: \(5x^2-4xy+y^2=0\)

\(\Leftrightarrow x^2-\dfrac{4}{5}xy+y^2=0\)

\(\Leftrightarrow x^2-2\cdot x\cdot\dfrac{2}{5}y+\dfrac{4}{25}y^2+\dfrac{21}{25}y^2=0\)

\(\Leftrightarrow\left(x-\dfrac{2}{5}y\right)^2+\dfrac{21}{25}y^2=0\)

Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)

Bình luận (0)
Edogawa Conan
6 tháng 9 2021 lúc 22:51

d)3x2+3y2+3xy-3x+3y+3=0

⇔ 6x2+6y2+6xy-6x+6y+6=0

⇔ 3(x+y)2+3(x-1)2+3(y+1)2=0

\(\Leftrightarrow\left\{{}\begin{matrix}x+y=0\\x-1=0\\y+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)

Bình luận (0)
C4 Mobile
Xem chi tiết
C4 Mobile
24 tháng 9 2021 lúc 9:04

bài 2 là tìm X nha mn

 

Bình luận (0)
Nguyễn Hoàng Minh
24 tháng 9 2021 lúc 9:12

\(1,\\ a,=x\left(2x+3y-5\right)\\ b,=x\left(x-2y\right)+\left(x-2y\right)=\left(x+1\right)\left(x-2y\right)\\ 2,\\ a,\Leftrightarrow x\left(x+4\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-4\end{matrix}\right.\\ b,\Leftrightarrow x\left(x-2y\right)+\left(x-2y\right)=0\\ \Leftrightarrow\left(x+1\right)\left(x-2y\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-1\\x=2y\left(y\in R\right)\end{matrix}\right.\)

Bình luận (0)
nguyễn phương linh
Xem chi tiết
Rin Huỳnh
2 tháng 10 2021 lúc 19:29

2a) pt <=> (x + 6)^2 = 0

<=> x = -6

b) pt <=> (4x - 1)^2 = 0

<=> x = 1/4

c) pt<=> (x + 1)^3 = 0

<=> x = -1

Bình luận (0)
Nguyễn Lê Phước Thịnh
2 tháng 10 2021 lúc 22:58

Bài 1:

a: Ta có: \(A=\left(4x+3y\right)^2+\left(4x-3y\right)^2\)

\(=16x^2+24xy+9y^2+16x^2-24xy+9y^2\)

\(=32x^2+18y^2\)

b: Ta có: \(B=\left(x-2\right)^3-\left(x+2\right)^3\)

\(=x^3-6x^2+12x-8-x^3-6x^2-12x-8\)

\(=-12x^2-24\)

Bình luận (0)