Cho tam giác ABC(A=90 độ) gọi D là điểm đối xứng vs A qua cạnh BC.Chứng minh 4 điểm A,B,C,D cùng thuộc 1 đường tròn
cho tam giác abc có góc a= 90 độ . gọi d là điểm đối xứng với a qua bc. cm 4 điểm a,b,c,d cùng thuộc 1 đường tròn
Cho tam giác ABC vuông tại B có cạnh AB=8cm ,BC =6cm.Gọi D là điểm đối xứng của B qua AC .Chứng minh 4 điểm A,B,C,D cùng thuộc một đường tròn
Đó là đường tròn có tâm là trung điểm của AC
Cho tam giác ABC vuông tại A, điểm M thuộc cạnh BC.Gọi D là điểm đối xứng vs M qua AB. Gọi E là điểm đối xứng vs M qua AC. Chứng minh: a. điểm D đối xứng vs E qua A b.BD song song vs CE c. điểm M ở vị trí nào trên BC thì đoạn DE có độ dài nhỏ nhất
a/ Nối AM
- Do D đối xứng với M qua AB => AB là đường trung trực của MD
=> AD=AM (t/c đường trung trực)
- Do E đối xứng với M qua AC => AC là đường trung trực của ME
=> AE=AM (t/c đường trung trực)
Từ đó suy ra: AD=AE hay A là trung điểm của DE hay D đối xứng với E qua A (đpcm)
b/ Ta có: AM=AE (cmt)
- Tứ giác MAEC có: AE=AM => Tứ giác MAEC là hình thoi => CE // AM
Tương tự ta cũng có: AM=AD (cmt)
- Tứ giác ADBM có: AM=AD => Tứ giác ADBM là hình thoi => BD // AM
Từ đó suy ra được: BD // CE (đpcm)
c/ Điểm M phải là trung điểm của BC thì DE mới có độ dài nhỏ nhất
Bài 1: Cho tam giác ABC vuông ở B, AB=8cm, BC=6cm. Gọi D là điểm đối xứng của điểm B qua AC
a, CMR: 4 điểm A, B, C, D cùng thuộc một đường tròn
b, Tính bán kính của đường tròn nói trong câu a
giangtruong2922/08/2020
Đáp án:
Giải thích các bước giải:
a)Do tam giác ABC vuông tại B mà AB=8cm;BC=6cmAB=8cm;BC=6cm
=> theo Pitago ta có: AC=AB2+BC2−−−−−−−−−−√=10AC=AB2+BC2=10
Gọi H là trung điểm của BD => B đối xứng D qua H
Xét tam giác CHBCHB và tam giác CHDCHD có:
HB=HDHB=HD (gt)
góc CHBCHB = góc CHDCHD
CHCH: chung
=> tam giác CHB = tam giác CHD (c.g.c ) => CB=CD=6CB=CD=6
Hoàn toàn tương tự ta có :
tam giác AHBAHB = tam giác AHDAHD (c.g.c) => AB=AD=8AB=AD=8
Xét tam giác ADC có AD=8;CD=6;AC=10AD=8;CD=6;AC=10
=> Theo Định lý Pitago đảo ta có:
=> AD2+CD2=AC2AD2+CD2=AC2
=> Tam giác ADC vuông tại D
=> Xét tứ giác ABCD có:
góc ABCABC = góc ADCADC = 90o90o
=> góc ABCABC +góc ADCADC =180o180o
=> tứ giác ABCD là tứ giác nội tiếp
=> A,B,C,D cùg thuộc đường tròn (ABC) (Đpcm)
b)Do ABC là tam giác vuông; A, B, C cùng thuộc đường tròn => AC là đường kính
Lấy O là tâm đường tròn => O là trung điểm AC
Bán kính đường tròn: OA=OB=AC2=5(cm)
Cho tam giác ABC có hai đường cao BE, CF cắt nhau tại H. Gọi E' là điểm đối xứng H qua AC, F' là điểm đối xứng H qua AB. Chứng minh:
a, Tứ giác BCE'F' nội tiếp đường tròn (O)
b, Năm điểm A, F', B, C, E' cùng thuộc một đường tròn
c, AO và EF vuông góc nhau
d, Khi A chạy trên (O) thì bán kính đường tròn ngoại tiếp tam giác AEF không đổi
a, ∆CHE' cân tại C => C E ' H ^ = C H E ' ^
DBHF' cân tại B => B F ' H ^ = B H F ' ^
Mà => C H E ' ^ = B H F ' ^ (đối đỉnh)
=> C E ' H ^ = B F ' H ^
=> Tứ giác BCE'F' nội tiếp đường tròn tâm (O)
b, Có B F C ' ^ = B E ' C ^ = C H E ' ^ = C A B ^
Vậy A, F', E' cùng chắn BC dưới góc bằng nhau
=> 5 điểm B, F', A, E', C cùng thuộc một đường tròn tâm (O)
c, AF' = AE' (=AH) => AO là trung trực của EF => AO ^ E'F'. DHE'F' có EF là đường trung bình => EF//E'F'
=> AO ^ FE
d, A F H ^ = A E H ^ = 90 0 => AFHE nội tiếp đường tròn đường kính AH. Trong (O): Kẻ đường kính AD, lấy I trung điểm BC
=> OI = 1 2 AH, BC cố định => OI không đổi
=> Độ dài AH không đổi
=> Bán kính đường tròn ngoại tiếp ∆AEF không đổi
Bài 1: Cho tam giác ABC vuông ở B, AB=8cm, BC=6cm. Gọi D là điểm đối xứng của điểm B qua AC
a, CMR: 4 điểm A, B, C, D cùng thuộc một đường tròn
b, Tính bán kính của đường tròn nói trong câu a
(có vẽ hình với ạ)
a: D đối xứng B qua AC
=>AC là trung trực của BD
=>AB=AD và CB=CD
Xét ΔABC và ΔADC có
AB=AD
BC=DC
AC chung
Do đó; ΔABC=ΔADC
=>góc ABC=góc ADC=90 độ
Xét tứ giác ABCD có
góc ABC+góc ADC=90 độ+90 độ=180 độ
=>ABCD nội tiếp đường tròn đường kính AC
b: ΔABC vuông tại B
=>AC^2=AB^2+BC^2
=>AC^2=8^2+6^2=10^2
=>AC=8cm
=>R=8/2=4cm
Cho tam giác ABC cân tại A nội tieeop đường tròn (O). từ M trên cạnh BC vẽ các đường thẳng song song các cạnh bên tam giác ABC cắt AB, AC tại P và Q. gọi D là điểm đối xứng của M qua PQ
a) Cm: góc ACD=ODC
b) Cm: tam giác APD = DQA
c) chứng minh A, B,C,D cùng thuộc một đường tròn
Cho tam giác ABC vuông tại B , AB = 8 cm , BC = 6 cm . Gọi D là điểm đối xứng của B qua AC.
a) Chứng minh : A , B , C , D cùng thuộc 1 đường tròn.
b) Tính bán kính của đường tròn trong câu a.
Cho tam giác cân ABC (AB=AC) P là điểm trên cạnh đáy BC . Kẻ các đường thẳng PE,PD lần lượt song song với AB,AC( E thuộc AC,D thuộc AB) gọi Q là điểm đối xứng với P qua DE . Chứng minh bốn điểm Q,A,B,C cùng thuộc một đường tròn.