Bài 8: Đối xứng tâm

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Phương Anh

Cho tam giác ABC vuông tại A, điểm M thuộc cạnh BC.Gọi D là điểm đối xứng vs M qua AB. Gọi E là điểm đối xứng vs M qua AC. Chứng minh: a. điểm D đối xứng vs E qua A b.BD song song vs CE c. điểm M ở vị trí nào trên BC thì đoạn DE có độ dài nhỏ nhất

Dinz
3 tháng 8 2021 lúc 17:26

a/ Nối AM

- Do D đối xứng với M qua AB => AB là đường trung trực của MD
=> AD=AM (t/c đường trung trực)

- Do E đối xứng với M qua AC => AC là đường trung trực của ME
=> AE=AM (t/c đường trung trực)

Từ đó suy ra: AD=AE hay A là trung điểm của DE hay D đối xứng với E qua A (đpcm)

b/ Ta có: AM=AE (cmt)

- Tứ giác MAEC có: AE=AM => Tứ giác MAEC là hình thoi => CE // AM 

Tương tự ta cũng có: AM=AD (cmt)

- Tứ giác ADBM có: AM=AD => Tứ giác ADBM là hình thoi => BD // AM

Từ đó suy ra được: BD // CE (đpcm)

c/ Điểm M phải là trung điểm của BC thì DE mới có độ dài nhỏ nhất