Cho tam giác nhọn ABC có hai đường cao AD, BE cắt nhau tại H. Chứng minh \(HA.HD = HB.HE\).
Cho tam giác ABC, các đường cao AD,BE,CF cắt nhau tại H, chứng minh hệ thức HA.HD=HB.HE=HC.HF
Xét \(\Delta HEA\)và \(\Delta HDB\)có:
\(\widehat{AHE}=\widehat{BHD}\)(đối đỉnh)
\(\widehat{AEH}=\widehat{BDH}\)(đường cao AD vuông với BC và BE vuông với AC)
\(\Rightarrow\Delta HEA\)đồng dạng với \(\Delta HDB\)(g.g)
\(\Rightarrow\frac{HA}{HB}=\frac{HE}{HD}\)\(\Rightarrow HA.HD=HB.HE\)\((1)\)
Chứng minh tương tự, ta có \(\Delta CEH\)đồng dang với \(\Delta BFH\)
\(\Rightarrow\frac{HC}{HB}=\frac{HE}{HF}\)\(\Rightarrow HC.HF=HB.HE\)\((2)\)
Từ \((1)\)và \((2)\)\(\Rightarrow HA.HD=HB.HE=HC.HF\)(đpcm)
Cho tam giác ABC nhọn, các đường cao AD,BE,CF cắt nhau tại H. Chứng minh a) BDHF nội tiếp b) BFEC nội tiếp c) HA.HD=HB.HE=HF.HC d) tam giác AEF đồng dạng tam giác ABC e) H là tâm đường tròn ngoại tiếp tam giác EFD
a: Xét tứ giác BDHF có
góc BDH+góc BFH=180 độ
=>BDHF là tứ giác nội tiếp
b: Xét tứ giác BFEC có
góc BFC=góc BEC=90 độ
=>BFEC là tứ giác nội tiếp
c: Xét ΔHAF vuông tại F và ΔHCD vuông tại D có
góc AHF=góc CHD
=>ΔHAF đồng đạng với ΔHCD
=>HA/HC=HF/HD
=>HA*HD=HF*HC
Xét ΔHFB vuông tại F và ΔHEC vuông tại E có
góc FHB=góc EHC
=>ΔHFB đồng dạng vơi ΔHEC
=>HF/HE=HB/HC
=>HF*HC=HB*HE=HA*HD
d: Xét ΔAEF và ΔABC có
góc AEF=góc ABC
góc FAE chung
=>ΔAEF đồng dạng với ΔABC
hai đường cao ad và be của tam giác abc cắt nhau tại h. chứng minh rằng: a) tam giác adc và tam giác bec là hai tam giác đồng dạng b) ha.hd=hb.he
a, Xét tam giác ADC và tam giác BEC ta có
^C _ chung
^ADC = ^BEC = 900
Vậy tam giác ADC ~ tam giác BEC (g.g)
b, => ^DAC = ^EBC ( 2 góc tương ứng )
Xét tam giác HAE và tam giác HBD ta có
^AHE = ^BHD ( đối đỉnh )
^HAE = ^HBD (cmt)
Vậy tam giác HAE ~ tam giác HBD (g.g)
\(\dfrac{AH}{HB}=\dfrac{HE}{DH}\Rightarrow AH.DH=HE.HB\)
cho tam giac ABC nhọn ,nội tiếp đường tròn tâm (O). Ba đường cao AD,BE,CF của tam giác ABC cắt nhau tại H a) Chứng minh B,C,E,F thuộc cùng 1 đường tròn b)Chứng minh HA.HD=HB.HE=HC.HF c)Chứng minh DH là tia phân giác của góc EDF
Cho tam giác ABC có 3 góc ngọn. Hai đường cao của tam giác ABC là AD,BE cắt nhau tại H (D thuộc BC; E thuộc AC).
a) Chứng minh: CDHE là tứ giác nội tiếp một đường tròn.
b) Chứng minh: HA.HD = HB.HE.
c) Gọi điểm I là tâm đường tròn ngoại tiếp tứ giác CDHE. Chứng minh IE là tiếp tuyến của đường tròn đường kính AB.
Cho tam giác ABC có 3 góc ngọn. Hai đường cao của tam giác ABC là AD,BE cắt nhau tại H (D thuộc BC; E thuộc AC).
a) Chứng minh: CDHE là tứ giác nội tiếp một đường tròn.
b) Chứng minh: HA.HD = HB.HE.
c) Gọi điểm I là tâm đường tròn ngoại tiếp tứ giác CDHE. Chứng minh IE là tiếp tuyến của đường tròn đường kính AB.
Cho tam giác ABC nhọn, có BE,AD là đường cao cắt ở H a) CM tam giác CDA đồng dạng tam giác CEB b) CM HA.HD=HB.HE c) CM tam giác ABC đồng dạng tam giác DEC d) Qua D kẻ đường thẳng vuông góc DE cắt BE tại M. CM góc ABC= góc EMD
a: Xét ΔCDA vuông tại D và ΔCEB vuông tại E có
góc C chung
Do đó: ΔCDA\(\sim\)ΔCEB
b: Xét ΔHEA vuông tại E và ΔHDB vuông tại D có
\(\widehat{AHE}=\widehat{BHD}\)
Do đó: ΔHEA\(\sim\)ΔHDB
Suy ra: HE/HD=HA/HB
hay \(HE\cdot HB=HD\cdot HA\)
Cho ∆ABC có 3 góc nhọn ( AB < AC ). Các đường cao AD, BE cắt nhau tại H
a) Chứng minh : ∆ABC ~ ∆BCE
b) Chứng minh : HB.HE = HA.HD
c) Cho biết AD = 12cm, BD = 5cm, DC = 9cm. Tính AB; HC.
a) Lỗi đánh máy à? ABC là tg vuông, trong khi BCE là tg nhọn => ko đồng dạng
b) Chứng minh 2 tg vuông AHE và BHD đồng dạng (g.g---góc vuông đã cho và 2 góc nhọn đối đỉnh)
=> tỉ số : HB/HA = HD/HE
Từ đó suy ra đẳng thức cần chứng minh ("nhân chéo")
c) Áp dụng đl Pi-ta-go tính AB
HC = ko biết (có thể liên quan đến câu a -- suy nghĩ riêng thôi)
Cho tam giác ABC có 3 góc nhọn, nội tiếp đường tròn O. Hai đường cao AD, BE cắt nhau tại H. Chứng minh tứ giác ABDE nội tiếp đường tròn
Cho tam giác ABC có 3 gó nhọn , nội tiếp đường tròn O . Hai đường cao AD,BE cắt nhau tại H
a, chứng minh tứ giác ABDE nội tiếp đường tròn
b, Tia AO cắt đương tròn O tại K . Chứng minh tứ giác BHCK là hình bình hành