Tìm các số hữu tỉ a,b thỏa mãn :(\(a\sqrt{5}+b\))(\(\sqrt{5}-2\))=1
Cho 3 số hữu tỉ a, b, c thỏa mãn \(a+b\sqrt{5}+c\sqrt{6}=1\). Tìm a, b, c
Tìm các số hữu tỉ a,b thỏa mãn \(\frac{5}{a+b\sqrt{2}}\)- \(\frac{4}{a-b\sqrt{2}}\)+18\(\sqrt{2}\)=3
\(\frac{5\left(a-b\sqrt{2}\right)-4\left(a+b\sqrt{2}\right)}{a^2-2b^2}+18\sqrt{2}=3\)
\(\left(a-9b\sqrt{2}\right)+\left(a^2-2b^2\right)18\sqrt{2}=3\left(a^2-2b\right)\)
\(\sqrt{2}\left[18\left(a^2-2b^2\right)-9b\right]+a=3\left(a^2-2b\right)\)
\(\sqrt{2}\)là số vô tỷ=> \(\hept{\begin{cases}2a^2-4b^2-b=0\\3a^2-6b-a=0\end{cases}\Leftrightarrow}\) (giải hệ này ra a,b)
Cho 3 số hữu tỉ a,b,c thỏa mãn \(a+b\sqrt{5}+c\sqrt{6}=1\). Tìm a,b,c.
Cho `a, b, c` là các số hữu tỉ thỏa mãn `a sqrt 21 + b sqrt 5 + c sqrt 2023 =0`
Chứng minh rằng `a = b = c = 0`.
Tìm số hữu tỉ a,b thỏa mãn 3/a+b$\sqrt{3}$ - 2/a-b$\sqrt{3}$ = 7-20$\sqrt{3}$
cho a,b,c là các số hữu tỉ không âm và thỏa mãn \(\sqrt{a}+\sqrt{b}+\sqrt{c}\) là số hữu tỉ. Chứng minh \(\sqrt{a},\sqrt{b},\sqrt{c}\)là các số hữu tỉ
Biết \(\sqrt{5}\)là số vô tỉ. Hãy tìm các số nguyên a,b thỏa mãn :
\(\frac{2}{a+b\sqrt{5}}-\frac{3}{a-b\sqrt{5}}=-9-20\sqrt{5}\)
Cho a,b,c là các số hữu tỉ khác 0 thỏa mãn điều kiện a=b+c
Chứng minh rằng \(\sqrt{\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}}\) là một số hữu tỉ
Ta có: \(a=b+c\Rightarrow c=a-b\)
\(\sqrt{\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}}=\sqrt{\dfrac{b^2c^2+a^2c^2+a^2b^2}{a^2b^2c^2}}=\sqrt{\dfrac{b^2\left(a-b\right)^2+a^2\left(a-b\right)^2+a^2b^2}{a^2b^2c^2}}=\sqrt{\dfrac{b^4+a^2b^2-2ab^3+a^4+a^2b^2-2a^3b+a^2b^2}{a^2b^2c^2}}=\sqrt{\dfrac{\left(a^2+b^2\right)^2-2ab\left(a^2+b^2\right)+a^2b^2}{a^2b^2c^2}}=\sqrt{\dfrac{\left(a^2+b^2-ab\right)^2}{a^2b^2c^2}}=\left|\dfrac{a^2+b^2-ab}{abc}\right|\)
=> Là một số hữu tỉ do a,b,c là số hữu tỉ
Làm vài đường cơ bản :)
B1: Tìm a,b nguyên thỏa mãn: \(\frac{5}{a+b\sqrt{2}}-\frac{4}{a-b\sqrt{2}}+18\sqrt{2}=3\)
B2: Cho a,b là các SHT thỏa mãn: \(\left(a^2+b^2-2\right)\left(a+b\right)^2+\left(1-ab\right)^2=-4ab\)
CM: \(\sqrt{1+ab}\) cũng là 1 số hữu tỉ
B3: Tìm m để phương trình vô nghiệm: \(\frac{2m-1}{x-2}=m-3\)
B1:
\(\Leftrightarrow5a-5b\sqrt{2}-4a-4b\sqrt{2}+18\sqrt{2}\left(a^2-2b^2\right)=3\left(a^2-2b^2\right)\)
\(\Leftrightarrow5a-5b\sqrt{2}-4a-4b\sqrt{2}+18a^2\sqrt{2}-36b^2\sqrt{2}=3a^2-6b^2\)
\(\Leftrightarrow18a^2\sqrt{2}-36b^2\sqrt{2}-9b\sqrt{2}=3a^2-6b^2-a\)
\(\Leftrightarrow\left(18a^2-36b^2-9b\right)\sqrt{2}=3a^2-6b^2-a\)
Nếu \(18a^2-36b^2-9b\ne0\Rightarrow\sqrt{2}=\frac{3a^2-6b^2-a}{18a^2-36b^2-9b}\)
Vì a,b nguyên nên \(\frac{3a^2-6b^2-a}{18a^2-36b^2-9b}\in Q\Rightarrow\sqrt{2}\in Q\)=> Vô lý vì \(\sqrt{2}\)là số vô tỉ.
Vậy ta có: \(18a^2-36b^2-9b=0\Rightarrow\hept{\begin{cases}18a^2-36b^2-9b=0\\3a^2-6b^2-a=0\end{cases}}\Leftrightarrow\hept{\begin{cases}3a^2-6b^2=\frac{3}{2}b\\3a^2-6b^2=a\end{cases}\Leftrightarrow a=\frac{3}{2}b}\)
Thay \(a=\frac{3}{2}b\)vào \(3a^2-6b^2-a=0\)ta có:
\(3.\frac{9}{4}b^2-6b^2-\frac{3}{2}b=0\Leftrightarrow27b^2-24b^2-6b=0\Leftrightarrow3b\left(b-2\right)=0\)
Ta có: b=0(loại) ; b=2(thoả mãn) . Vậy a=3. KL:...
B2: \(GT\Rightarrow\left[\left(a+b\right)^2-2\left(ab+1\right)\right]\left(a+b\right)^2+\left(1+ab\right)^2=0\)
\(\Leftrightarrow\left(a+b\right)^4-2\left(a+b\right)^2\left(1+ab\right)+\left(1+ab\right)^2=0\)
\(\Leftrightarrow\left[\left(a+b\right)^2-\left(1+ab\right)\right]^2=0\Rightarrow\left(a+b\right)^2-\left(1+ab\right)=0\)
\(\Leftrightarrow\left(a+b\right)^2=1+ab\Leftrightarrow\left|a+b\right|=\sqrt{1+ab}\in Q\)( vì a,b thuộc Q)
KL:....
B3:
ĐKXĐ: \(x\ne2\)
\(\frac{2m-1}{x-2}=m-3\Rightarrow2m-1=\left(x-2\right)\left(m-3\right)\)
2m 1 = \(mx-2m-3x+6\Rightarrow\left(m-3\right)x=4m-7\)(*)
Xét m=3 , pt (*) trở thành 0.x(vô lý)
m=3 pt đã cho vô nghiệm
Xét m khác 3 , pt (*) có nghiệm \(x=\frac{4m-7}{m-3}\)
để pt đã cho vô nghiệm thì \(\frac{4m-7}{m-3}=2;m=\frac{1}{2}\)
Vậy với m=3 , m= 1/2 thì pt đã cho VN