đặt nhân tử chung 3x-6y
bài 1 phân tích đa thức thành nhân tử bàng phương pháp đặt nhân tử chung
1) 2x^2-4x
2) 3x-6y
3) x^2-3x
4) 4x^2-6x
5) x^3-4x
1) 2x2 - 4x = 2x( x - 2 )
2) 3x - 6y = 3( x - 2y )
3) x2 - 3x = x( x - 3 )
4) 4x2 - 6x = 2x( x - 3 )
5) x3 - 4x = x( x2 - 4 ) = x( x - 2 )( x + 2 )
1) \(2x^2-4x=2x\left(x-2\right)\)
2) \(3x-6y=3\left(x-2y\right)\)
3) \(x^2-3x=x\left(x-3\right)\)
4) \(4x^2-6x=2x\left(2x-3\right)\)
5) \(x^3-4x=x\left(x-2\right)\left(x+2\right)\)
1, \(2x^2-4x=2x\left(x-2\right)\)
2, \(3x-6y=3\left(x-2y\right)\)
3, \(x^2-3x=x\left(x-3\right)\)
4, \(4x^2-6x=2x\left(x-3\right)\)
5, \(x^3-4x=x\left(x^2-4\right)=x\left(x-2\right)\left(x+2\right)\)
Phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung:
x(x+y) - 6x - 6y
\(x\left(x+y\right)-6x-6y\)
\(=x\left(x+y\right)-6\left(x+y\right)\)
\(=\left(x-6\right)\left(x+y\right)\)
đặt nhân tử chung x^3+2x^2+3x
\(x^3+2x^2+3x\)
\(=x\left(x^2+2x+3\right)\)
#Ayumu
đặt nhân tử chung 9x^3y^2+3x^2y^2
\(9x^3y^2+3x^2y^2\)
\(=3x^2y^2\left(3x+1\right)\)
đặt nhân tử chung
a 2x^2 +3x -2xy -3y
b x^3 -4x^2+4x
\(a,2x^2+3x-2xy-3y\)
\(=x\left(2x+3\right)-y\left(2x+3\right)\)
\(=\left(2x+3\right)\left(x-y\right)\)
\(b,x^3-4x^2+4x\)
\(=x\left(x^2-4x+4\right)\)
\(=x\left(x-2\right)^2\)
#Urushi
a) \(2x^2+3x-2xy-3y\)
\(\text{=}2x\left(x-y\right)+3\left(x-y\right)\)
\(\text{=}\left(2x+3\right)\left(x-y\right)\)
b) \(x^3-4x^2+4x\)
\(\text{=}x\left(x^2-4x+4\right)\)
\(\text{=}x\left(x-2\right)^2\)
phân tích đa thức thành phân tử(đặt nhân tử chung)
3x(x+1)^2-5x^2(x+1)+7(x+1)
\(3x\left(x+1\right)^2-5x^2\left(x+1\right)+7\left(x+1\right)\)
\(=\left(x+1\right)\left(3x^2+3x-5x^2+7\right)\)
\(=\left(x+1\right)\left(-2x^2+3x+7\right)\)
ĐẶT NHÂN TỬ CHUNG
a) 3x-6 d) 2x(x-3)+7(x-3)
b) 2x+10 e) 3x(x-1)+2(x-1)
c) x\(^2\)-3x f) x\(^2\)(x+2)-5x(x+2)
a) \(=3\left(x-2\right)\)
b) \(=2\left(x+5\right)\)
c) \(=x\left(x-3\right)\)
d) \(=\left(x-3\right)\left(2x+7\right)\)
e) \(=\left(x-1\right)\left(3x+2\right)\)
f) \(=x\left(x+2\right)\left(x-5\right)\)
phân tích đa thức sau thành nhân tử bằng phương pháp đặt nhân tử chung
7xy^5(x-1) - 3x^2y^4(1-x)+5xy^3(x-1)
\(7xy^5\left(x-1\right)-3x^2y^4\left(1-x\right)+5xy^3\left(x-1\right)\)
\(=7xy^5\left(x-1\right)+3x^2y^4\left(x-1\right)+6xy^3\left(x-1\right)\)
\(=\left(x-1\right)\left(7xy^5+3x^2y^4-6xy^3\right)=xy\left(x-1\right)\left(7y^4+3xy^3-6y^2\right)\)
Trả lời:
7xy5(x - 1) - 3x2y4(1 - x) + 5xy3(x - 1)
= 7xy5(x - 1) + 3x2y4(x - 1) + 5xy3(x - 1)
= (7xy5 + 3x2y4 + 5xy3)(x - 1)
= xy(7y4 + 3xy3 + 5y2)(x - 1)
bài 1 phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung
21)x^3-4x^2+4x
22)15x^2y+20xy^2-25xy
23)4x^2+8xy-3x-6y
24)x^3-6x^2+9x
25)x^2-xy+x-y
26)xy-2x-y^2+2y
27)x^2+x-xy-y
28)x^2+4x-y^2+4x
29)x^2-2xy+y^2-4
21, \(x^3-4x^2+4x=x\left(x^2-4x+4\right)=x\left(x-2\right)^2\)
22, \(15x^2y+20xy^2-25xy=5xy\left(3x+4y-5\right)\)
23, \(4x^2+8xy-3x-6y=4x\left(x+2y\right)-3\left(x+2y\right)=\left(4x-3\right)\left(x+2y\right)\)
24, \(x^3-6x^2+9x=x\left(x^2-6x+9\right)=x\left(x-3\right)^2\)
Tương tự :))
21.\(x^3-4x^2+4x\)
\(=x\left(x^2-4x+4\right)\)
\(=x\left(x-2\right)^2\)
22,\(15x^2y+20xy^2-25xy\)
\(=5xy\left(3x+4y-5\right)\)
23,\(4x^2+8xy-3x-6y\)
\(=4x\left(x+2y\right)-3\left(x+2y\right)\)
\(=\left(4x-3\right)\left(x+2y\right)\)
24\(x^3-6x^2+9x\)
\(=x\left(x^2-6x+9\right)\)
\(=x\left(x-3\right)^2\)
25,\(x^2-xy+x-y\)
\(=x\left(x-y\right)+\left(x-y\right)\)
\(=\left(x+1\right)\left(x-y\right)\)
26.\(xy-2x-y^2+2y\)
\(=x\left(x-2\right)-y\left(y-2\right)\)
\(=\left(x-y\right)\left(x-2\right)\)
27,\(x^2+x-xy-y\)
\(=\left(x^2-xy\right)+\left(x-y\right)\)
\(=x\left(x-y\right)+\left(x-y\right)\)
\(=\left(x+1\right)\left(x-y\right)\)
28,\(x^2+4x-y^2+4\)
\(=\left(x^2+4x+4\right)-y^2\)
\(=\left(x+2\right)^2-y^2\)
\(=\left(x+2-y\right)\left(x+2+y\right)\)
29.\(x^2-2xy+y^2-4\)
\(=\left(x-y\right)^2-2^2\)
\(=\left(x-y-2\right)\left(x-y+2\right)\)