Cho ΔABC có góc A = \(50^o\), AB = 4cm, AC = 6cm. Tính diện tích tam giác ABC.
cho tam giác ABC vuông tại A, có các cạnh góc vuông AB=4cm, AC=6cm. từ chân đường trung tuyến AM kẻ ME vuông góc với AB và MG vuông góc với AC
a) tính diện tích tứ giác AEMG
b) so sánh diện tích tứ giác AEMG và diện tích tam giác ABC
Cho tam giác ABC vuông tại A ,AB=4cm , AC=6cm , AM là đường trung tuyến . Từ D kẻ MD vuông góc AB , ME vuông góc AC . ( D thuộc AB , M thuộc AC )
a) Tứ giác ADME là hình gì ?
b) Tính diện tích tam giác ABC . Tính diện tích tứ giác ADME ?
c) Tìm điều kiện của tam giác ABC để ADME là hình vuông ?
a: Xét tứ giác ADME có
\(\widehat{ADM}=\widehat{AEM}=\widehat{DAE}=90^0\)
=>ADME là hình chữ nhật
b: Diện tích tam giác ABC là:
\(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC=\dfrac{1}{2}\cdot4\cdot6=2\cdot6=12\left(cm^2\right)\)
Xét ΔABC có
M là trung điểm của BC
MD//AC
Do đó: D là trung điểm của AB
=>\(AD=DB=\dfrac{AB}{2}=2\left(cm\right)\)
Xét ΔABC có
M là trung điểm của BC
ME//AB
Do đó: E là trung điểm của AC
=>\(AE=EC=\dfrac{AC}{2}=3\left(cm\right)\)
Diện tích hình chữ nhật ADME là:
\(S_{ADME}=AD\cdot AE=2\cdot3=6\left(cm^2\right)\)
c: Để hình chữ nhật ADME trở thành hình vuông thì AD=AE
mà AD=AB/2; AE=AC/2
nên AB=AC
Cho tam giác ABC có AB=4cm, AC=6cm nội tiếp đường tròn tâm O. Tiếp tuyến tại A cắt BC tại
M. Tính tỉ số diện tích tam giác AMB và AMC
Ta có \(\dfrac{S_{AMB}}{S_{AMC}}=\left(\dfrac{AB}{AC}\right)^2=\dfrac{16}{36}=\dfrac{4}{9}\)
1. Cho tam giác ABC có góc B=45 độ, góc C=30 độ , BM là đường trung tuyến của tam giác ABC. Tính số đo góc AMB
2. Cho tam giác ABC có AB=6cm, AC=10cm, độ dài đường trung tuyến AM=4cm. Tính diện tích tam giác ABC
Cho tam giác ABC có AB = 6cm, AC = 10cm, độ dài đường trung tuyến AM = 4cm. Tính diện tích tam giác ABC.
Cho ΔABC vuông tại A,có AC=6cm,AB=4cm,điểm M nằm giữa B và C.Qua M vẽ đường thẳng song song với AB cát AC và đường thẵng song song với AC cắt AB tại F
a)Chứng minh AEMF là hình chữ nhật
b)Tính diện tích tam gics ABC
c)Tính diện tích tứ giác AEMF biết AE=6cm, ME=8cm
Cho tam giác ABC có AB = 6cm, AC = 10cm, độ dài đường trung tuyến AM là 4cm. Tính diện tích tam giác ABC.
8. Cho tam giác ABC có AB = 6cm, AC = 8 cm. Trên tia đối của AB lấy điểm D sao cho 3AD = AB. Kẻ DH vuông góc với BC.
a. Chứng minh tam giác ABC đồng dạng với tam giác HBD
b. Tính BC, HB, HD, HC
c. Gọi K là giao điểm của DH và AC. Tính tỉ số diện tích của ΔAKD và ΔABC.
cho tam giác ABC vuông ở A , có AB=6cm, AC=8cm. vẽ đường cao AH
a, tính BC
b, chứng minh ΔABC đồng dạng với ΔAHB
c, tính diện tích ΔABH và ΔBDC
a/ Áp dụng định lý Pytago vào \(\Delta ABC\) vuông tại \(A\):
\(\to BC=\sqrt{AB^2+AC^2}=\sqrt{6^2+8^2}=\sqrt{100}=10\) (cm)
b/ Xét \(\Delta BAC\) và \(\Delta BHA\):
\(\widehat{B}:chung\)
\(\widehat{BAC}=\widehat{BHA}(=90^\circ)\)
\(\to \Delta BAC\backsim \Delta BHA\) (g-g)
c/ \(AH\cdot BC=AC\cdot AB\)
\(\to AH=\dfrac{AC\cdot AB}{BC}=\dfrac{6\cdot 8}{10}=4,8\) (cm)
Áp dụng định lý Pytago vào \(\Delta AHB\) vuông tại \(H\)
\(\to BH=\sqrt{AB^2-AH^2}=\sqrt{6^2-4,8^2}=\sqrt{12,96}=3,6\) (cm)
\(S_{\Delta AHB}=\dfrac{1}{2}\cdot AH\cdot BH=\dfrac{1}{2}\cdot 4,8\cdot 3,6=8,64(cm^2)\)
Thiếu điểm D nên không tính được diện tích tam giác BDC