Cho các thẻ dưới đây.
a) Lập 5 số chẵn có sáu chữ số
b) Lập 5 số lẻ có sáu chữ số
Cho các thẻ số: 7, 8, 9, 0, 0, 0
a. Lập các số chẵn có sáu chữ số mà lớp nghìn của các số đó gồm các chữ số: 0, 0, 7.
b. Lập các số lẻ có sáu chữ số mà lớp đơn vj của các số đó gồm các chữ số: 0, 7, 9.
Hùng có 8 thẻ số: 0, 5, 0, 0, 0, 0, 6, 0
A. Hùng có thể tạo được bao nhiêu số lẻ có 8 chữ số
B. Hùng có thể lập được bao nhiêu số chẵn có 8 chữ số
Từ sáu thẻ số: 0,1,2,3,4,5 hãy lập tất cả các số chẵn có sáu chữ số khác nhau. Biết mỗi số đều có chữ số hàng trăm nghìn là 5, chữ số hàng chục nghìn là 0, tổng 2 chữ số hàng nghìn và hàng trăm bằng 5 và cũng bằng tổng hai chũ số hàng chục và hàng đơn vị.
Các số cần tìm có dạng \(\overline{abcdef}\) (a ≠ 0).
Theo đề, a = 5; b = 0; c + d = e + f = 5; và f chia hết cho 2.
c và d có thể lần lượt bằng 1 và 4; 4 và 1; 2 và 3; 3 và 2.
Khi đó e và f lần lượt bằng 3 và 2; 3 và 2; 1 và 4; 1 và 4.
Vậy các số cần tìm là 501432; 504132; 502314; 503214.
Có bao nhiêu số có bốn chữ số khác nhau chia hết cho 2 được lập từ bốn trong sáu chữ số 0; 2; 3; 5; 8; 9
A. 156 số
B. 180 số
C. 300 số
D. 540 số
Có ba tấm thẻ ghi số 1, một tấm thẻ ghi số 5, một tấm thẻ ghi số 7, một tấm thẻ ghi số 8. Hỏi có thể lập được bao nhiêu số tự nhiên có sáu chữ số khi đặt sáu tấm thẻ này trên cùng một hàng?
Từ các chữ số 1, 2, 3, 4, 5, 6 có thể lập được bao nhiêu số tự nhiên chẵn có sáu chữ số và tho mãn điều kiện: sáu chữ số của mỗi số là khác nhau và chữ số hàng nghìn lớn hơn 2?
A. 720 số
B. 360 số
C. 288 số
D. 240 số
Đáp án D
Gọi a b c d e f ¯ là số cần lập.
Suy ra f ∈ 2 ; 4 ; 6 , c ∈ 3 ; 4 ; 5 ; 6 .
Ta có
TH1: f = 2
⇒ có 1.4.4.3.2.1 = 96 cách chọn
TH2: f = 6
⇒ có 1.3.1.3.2.1 = 72 cách chọn
TH3: f = 6
⇒ có 1.3.4.3.2.1 = 72 cách chọn.
Suy ra 96 + 72 + 72 = 240 số thỏa mãn đề bài
Từ các chữ số 1, 2, 3, 4, 5, 6 có thể lập được bao nhiêu số tự nhiên chẵn có sáu chữ số và thoả mãn điều kiện: sáu chữ số của mỗi số là khác nhau và chữ số hàng nghìn lớn hơn 2?
A. 720 số.
B. 360 số.
C. 288 số.
D. 240 số.
Đáp án D
Ta xét hai trường hợp chữ số hàng đơn vị bằng 2 và khác 2.
+) Chữ số hàng đơn vị là 2
Số hàng nghìn lớn hơn 2 nên có 4 cách chọn (3, 4, 5, 6). Còn 4 chữ số sắp xếp vào 4 vị trí còn lại có A 4 4 = 4 ! = 24 cách xếp.
Như vậy tổng số chữ số thỏa mãn bài toán trong trường hợp này là N1 = 4.24 = 96 (số)
+) Chữ số hàng đơn vị khác 2 nên có thể bằng 4 hoặc 6
Số hàng nghìn lớn hơn 2 nên có 3 cách chọn (3, 5 và 6 hoặc 4). Còn 4 chữ số sắp xếp vào 4 vị trí còn lại có A 4 4 = 4 ! = 24 cách xếp.
Như vậy tổng số chữ số thỏa mãn bài toán trong trường hợp này là N2 = 2.3.24 = 144 (số)
=> Tổng số các chữ số thỏa mãn bài toán N = N1 + N2 = 96 + 144 = 240 (số).
Từ các chữ số 1, 2, 3, 4, 5, 6 có thể lập được bao nhiêu số tự nhiên chẵn có sáu chữ số và tho mãn điều kiện: sáu chữ số của mỗi số là khác nhau và chữ số hàng nghìn lớn hơn 2?
A. 720 số
B. 360 số
C. 288 số
D. 240 số
Đáp án D
Gọi a b c d e f ¯ là số cần lập. Suy ra f ∈ 2 ; 4 ; 6 , c ∈ 3 ; 4 ; 5 ; 6 . Ta có
TH1: f = 2 ⇒ có 1.4.4.3.2.1 = 96 cách chọn
TH2: f = 4 ⇒ có 1.3.4.3.2.1 = 72 cách chọn
TH3: f = 6 ⇒ có 1.3.4.3.2.1 = 72 cách chọn.
Suy ra 96 + 72 + 72 = 240 số thỏa mãn đề bài
Từ các chữ số 1, 2, 3, 4, 5, 6 có thể lập được bao nhiêu số tự nhiên chẵn có sáu chữ số và thoả mãn điều kiện: sáu chữ số của mỗi số là khác nhau và chữ số hàng nghìn lớn hơn 2?
A. 720 số.
B. 360 số.
C. 288 số.
D. 240 số.
Đáp án D
Ta xét hai trường hợp chữ số hàng đơn vị bằng 2 và khác 2.
+) Chữ số hàng đơn vị là 2
Số hàng nghìn lớn hơn 2 nên có 4 cách chọn (3, 4, 5, 6). Còn 4 chữ số sắp xếp vào 4 vị trí còn lại có A 4 4 = 4 ! = 24 cách sắp xếp.
Như vật tổng số chữ số thỏa mãn bài toán trong trường hợp này là: N 1 = 4.24 = 96 (số)
+) Chữ số hàng đơn vị khác 2 nên có thể bằng 4 hoặc 6
Số hàng nghìn lớn hơn 2 nên có 3 cách chọn (3, 5 và 6 hoặc 4). Còn 4 chữ số sắp xếp vào 4 vị trí còn lại có A 4 4 = 4 ! = 24 cách sắp xếp.
Như vật tổng số chữ số thỏa mãn bài toán trong trường hợp này là N 2 = 2.3.24 = 144 (số)
=> Tổng số các chữ số thỏa mãn bài toán:
N = N 1 + N 2 = 96 + 144 = 240 (số).