phân tích đa thức thành nhân tử : \(x-6\sqrt{x-3}+6\)
phân tích đa thức thành nhân tử
\(x\sqrt{x}-9\)
\(x-\sqrt{x}-6\)
\(2x+5\sqrt{x}-3\)
\(x-\sqrt{x}-6=\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)\)
\(2x+5\sqrt{x}-3=\left(\sqrt{x}+3\right)\left(2\sqrt{x}-1\right)\)
Phân tích đa thức thành nhân tử ( với x > hoặc bằng 0 )
2+\(\sqrt{3}+\sqrt{6}+\sqrt{8}\)
\(2+\sqrt{3}+\sqrt{6}+\sqrt{8}=2+\sqrt{3}+\sqrt{6}+2\sqrt{2}\)
\(=2+\sqrt{3}+\sqrt{2}\left(2+\sqrt{3}\right)=\left(2+\sqrt{3}\right)\left(\sqrt{2}+1\right)\)
\(2+\sqrt{3}+\sqrt{6}+\sqrt{8}=\left(\sqrt{2}+1\right)\left(2+\sqrt{3}\right)\)
phân tích đa thức thành nhân tử
\(x-5\sqrt{x}+6\)
Lời giải:
$x-5\sqrt{x}+6=x-2\sqrt{x}-3\sqrt{x}+6$
$=\sqrt{x}(\sqrt{x}-2)-3(\sqrt{x}-2)$
$=(\sqrt{x}-2)(\sqrt{x}-3)$
\(x-5\sqrt{x}+6=\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)\)
phân tích đa thức thành nhân tử
\(x-6\sqrt{x}+8\)
\(x-6\sqrt{x}+8\)
\(=x-2\sqrt{x}-4\sqrt{x}+8\)
\(=\sqrt{x}\left(\sqrt{x}-2\right)-4\left(\sqrt{x}-2\right)\)
\(=\left(\sqrt{x}-2\right)\left(\sqrt{x}-4\right)\)
Phân tích đa thức thành nhân tử :
\(x^2+5\sqrt{x+6}\)
phân tích đa thức thành nhân tử `x^2 - x^3 - 6`
cách phân tích đa thức có dạng ax + b\(\sqrt{x}\) + c thành nhân tử với x > 0
từ đó phân tích đa thức x +8 \(\sqrt{x}\) + 7 thành nhân tử với x > 0
phân tích đa thức thành nhân tử: \(x-\sqrt{x}-6\)
Phân tích đa thức thành nhân tử:
(x-1)(x+3)(x+2)(x+6)
\(=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)
\(=\left(x^2+5x\right)^2-36\)