CHO TAM GIÁC ABC VUÔNG TẠI A , ĐƯỜNG CAO AH.BIẾT \(AB=4HC=6\).GIẢI TAM GIÁC VUÔNG ABC
a) Cho tam giác ABC vuông tại A, đường cao AH.
Biết AB = 8cm, BH = 4cm. Tính: BC, HC, AH.
b) Cho tam giác ABC vuông tại A, đường cao AH.
Biết AB = 6cm, BH = 3cm. Tính: BC, HC, AH.
a: \(AH=4\sqrt{3}\left(cm\right)\)
HC=12cm
BC=16cm
CHO TAM GIÁC ABC VUÔNG TAIJ A, KẺ ĐƯỜNG CAO AH. BIẾT \(AB=4HC=6\).GIẢI TAM GIÁC VUÔNG ABC
Cho tam giác ABC vuông tại A, đường cao AH.Biết BH=6,4,CH=3,6cm a, Tính AB,AC ,AH b,Tính diện tích tam giác ABC
a: Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\\AH^2=HB\cdot HC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=8\left(cm\right)\\AC=6\left(cm\right)\\AH=4,8\left(cm\right)\end{matrix}\right.\)
b: \(S_{ABC}=\dfrac{AB\cdot AC}{2}=\dfrac{8\cdot6}{2}=24\left(cm^2\right)\)
Cho tam giaác ABC vuông tại A,đường cao AH.Biết AB = 3cm,BC = 5cm.
a.Hãy giải tam giác ABC (góc làm tròn đến độ)
b.Kẻ BD là phân giác của góc B.Hãy tính độ dài các đoạn AD,DE
a, Ta có \(\sin\widehat{C}=\dfrac{AB}{BC}=\dfrac{3}{5}\approx\sin37^0\Leftrightarrow\widehat{C}\approx37^0\)
\(\Leftrightarrow\widehat{B}=90^0-\widehat{C}=53^0\)
b, Sửa đề: Hãy giải AD,DC
Vì BD là p/g nên \(\dfrac{AD}{DC}=\dfrac{AB}{BC}=\dfrac{3}{5}\Rightarrow AD=\dfrac{3}{5}DC\)
Mà \(AC=\sqrt{BC^2-AB^2}=4\left(cm\right)\left(pytago\right)\)
Do đó \(\dfrac{3}{5}DC+DC=4\Rightarrow\dfrac{8}{5}DC=4\Rightarrow DC=\dfrac{5}{2}\left(cm\right)\)
\(\Rightarrow AD=\dfrac{3}{2}\left(cm\right)\)
Cho tam giác ABC vuông tại A,có đường cao AH.Biết BC=10cm ,BH=3,6cm
Tính
a) Độ dài các đoạn AB,AC,CH,AH
b)Diện tích tam giác ABC
c)Tính chu vi tam giác ABC
a. + CH = 10 - 3.6 = 6.4 (cm)
- Áp dụng hệ thức về cạnh và đường cao trong tam giác vuông vào ΔABC ta có :
+ \(AH^2=BH.CH\)
\(\Rightarrow AH=\sqrt{BH.CH}=\sqrt{3,6.6,4}=4.8\) (cm)
+ \(AB^2=BC.BH\)
\(\Rightarrow AB=\sqrt{BC.BH}=\sqrt{10.3,6}=6\) (cm)
+ \(AC^2=BC.CH\)
\(\Rightarrow AC=\sqrt{BC.CH}=\sqrt{10.6,4}=8\) (cm)
b. \(S_{ABC}=\dfrac{1}{2}.AB.AC=\dfrac{1}{2}.6.8=24\left(cm^2\right)\)
c. \(P_{ABC}=AB+AC+BC=6+8+10=24\left(cm\right)\)
cho tam giác abc vuông tại a có đường cao ah.biết ab = 19.5 . ah =18cm ch=5.76 nhan bh.tính chu vi tam giác
BC=BH+CH
=7,5+43,2
=50,7
CVabc= 50.7+19.5+46.8
cho tam giác ABC vuông tại A có đường cao AH.Biết AB=15cm,HB=9cm tính AB,BC,AH,HC
AH=căn 12^2-9^2=3*căn 7(cm)
CH=AH^2/HB=9*7/9=7(cm)
BC=9+7=16cm
AC=căn CH*BC=4*căn 7(cm)
Xét tam giác \(ABH\) vuông tại H có
\(AH^2+HB^2=AB^2\left(Pytago\right)\)
\(\Leftrightarrow AH=\sqrt{AB^2-BH^2}=\sqrt{15^2-9^2}=12\left(cm\right)\)
Xét tam giác ABC vuông tại A
\(AB^2=HB.BC\\ \Rightarrow BC=\dfrac{AB^2}{HB}=\dfrac{15^2}{9}=25\left(cm\right)\\ HB+HC=BC\\ \Rightarrow HC=BC-BH=25-9=16\left(cm\right)\\ AB.AC=AH.BC\\ \Rightarrow AC=\dfrac{AH.BC}{AB}=\dfrac{12.25}{15}=20\left(cm\right)\)
Ta có tam giác ABC vuông tại A và đường cao AH nên:
Áp dụng tính chất cạnh góc vuông và hình chiếu:
\(AB^2=BC\cdot HB\Rightarrow BC=\dfrac{AB^2}{HB}=\dfrac{15^2}{9}=25\left(cm\right)\)
Ta có tam giác HAB vuông tại H áp dụng tính định lý Py-ta-go:
\(AH=\sqrt{AB^2-HB^2}=\sqrt{15^2-9^2}=12\left(cm\right)\)
Mà: \(HB+HC=BC\Rightarrow HC=BC-HB=25-9=16\left(cm\right)\)
Lại áp dụng tính chất hình chiếu và cạnh góc vuông ta có:
\(AC=\sqrt{25\cdot16}=20\left(cm\right)\)
Cho tam giác ABC vuông tại A,đường cao AH,AB=2AC.Chứng minh HB=4HC
Cho tam giác ABC vuông tại A có đường cao AH.Biết AC=15cm; HB=16cm.Tính BC;AB;AH;CH
Ta có: \(AC^2=CH\cdot BC\)
\(\Leftrightarrow CH^2+16HC-225=0\)
\(\Leftrightarrow CH^2+25HC-9HC-225=0\)
\(\Leftrightarrow CH=9\left(cm\right)\)
Áp dụng định lí Pytago vào ΔACH vuông tại H, ta được:
\(AC^2=AH^2+HC^2\)
\(\Leftrightarrow AH^2=15^2-9^2=144\)
hay AH=12cm
Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:
\(AB^2=AH^2+HB^2\)
\(\Leftrightarrow AB^2=12^2+16^2=400\)
hay AB=20cm
Ta có: BC=BH+HC
nên BC=9+16=25cm