B= 9/1.4 + 9/4.7 + ... + 9/97.100
Tính tổng B=2/1.4+2/4.7+2/7.10+.....+2/97.100
Mình mới học lớp 5 , xin lỗi nhé, mình cũng rất muốn giúp bạn nhưng ko đc.
nếu không làm được thì thôi, mong bạn đừng nhắn lời xin lỗi ạ. Không ai như bạn đâu!
Tính :
1/1.4 + 1/4.7 + 1/7.10 + ... + 1/97.100
Tìm a thuộc Z để :
2a+9/a+3 - 5a+10/a+3 - 3a/a+3 có giá trị nguyên
Cho abc = 1. Chứng minh rằng
1/ab+a+1 + b/bc+b+1 + 1/abc+bc+b = 1
Tính B = 2/1.4 + 2/4.7 + 2/7.10 + ....+ 2/97.100
\(B=\dfrac{2}{1.4}+\dfrac{2}{4.7}+\dfrac{2}{7.10}+...+\dfrac{2}{97.100}\)
\(B=\dfrac{2}{3}\left(\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{97.100}\right)\)
\(B=\dfrac{2}{3}\left(\dfrac{4-1}{1.4}+\dfrac{7-4}{4.7}+\dfrac{10-7}{7.10}+...+\dfrac{100-97}{97.100}\right)\)
\(B=\dfrac{2}{3}\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{97}-\dfrac{1}{100}\right)\)
\(B=\dfrac{2}{3}\left(1-\dfrac{1}{100}\right)\)
\(B=\dfrac{2}{3}.\dfrac{99}{100}\)
\(B=\dfrac{33}{50}\)
5/1.4 + 5/4.7+...+5/97.100 = ?
A=5(1/1.4+1/4.7+1/7.10+...+1/97.100)
A:5.3=3/1.4+3/4.7+...+3/97.100
A.3/5=1-1/4+1/4+--1/7+...+1/94-1/97+1/97-1/100
A.3/5=1-1/100
A.3/5=99/100
A=99/100:3/5
A=33/20
K44555555555555555555555555555555555555555555555555555555
Tính :1.4+4.7+7.10+...+97.100
Đặt A=1.4+4.7+7.10+...+97.100
9A=1.4.9+4.7.9+7.10.9+...+97.100.9
=1.4(7+2)+4.7(10-1)+7.10(13-4)+...+97.100(103-94)
=8+97.100.103
=999108
\(\Rightarrow\)A=999108:9
\(\Rightarrow\)A=111012
Học tốt nha!!!
## Bước 1: Phân tích dãy số
Dãy số trên có dạng: 1.4 + 4.7 + 7.10 + ... + 97.100
Ta nhận thấy mỗi số hạng trong dãy đều là tích của hai số, số thứ nhất tăng dần theo quy luật cộng 3 (1, 4, 7, ...), số thứ hai tăng dần theo quy luật cộng 3 (4, 7, 10, ...).
## Bước 2: Biểu diễn tổng dưới dạng công thức
Gọi tổng của dãy số là S. Ta có thể viết lại S dưới dạng công thức:
S = 1.4 + 4.7 + 7.10 + ... + 97.100
S = (1 x 4) + (4 x 7) + (7 x 10) + ... + (97 x 100)
## Bước 3: Tính tổng
Để tính tổng S, ta có thể sử dụng phương pháp sau:
* **Nhân cả hai vế của S với 3:**
3S = 3(1 x 4) + 3(4 x 7) + 3(7 x 10) + ... + 3(97 x 100)
3S = (1 x 4 x 3) + (4 x 7 x 3) + (7 x 10 x 3) + ... + (97 x 100 x 3)
3S = (1 x 4 x (7 - 1)) + (4 x 7 x (10 - 4)) + (7 x 10 x (13 - 7)) + ... + (97 x 100 x (103 - 97))
3S = (1 x 4 x 7 - 1 x 4 x 1) + (4 x 7 x 10 - 4 x 7 x 4) + (7 x 10 x 13 - 7 x 10 x 7) + ... + (97 x 100 x 103 - 97 x 100 x 97)
* **Rút gọn:**
3S = (1 x 4 x 7) + (4 x 7 x 10) + (7 x 10 x 13) + ... + (97 x 100 x 103) - (1 x 4 x 1) - (4 x 7 x 4) - (7 x 10 x 7) - ... - (97 x 100 x 97)
* **Nhận thấy:**
Các số hạng trong ngoặc thứ nhất và thứ hai đều triệt tiêu lẫn nhau, chỉ còn lại:
3S = 97 x 100 x 103 - 1 x 4 x 1
3S = 1000900 - 4
3S = 1000896
* **Tính S:**
S = 1000896 / 3
S = 333632
## Kết luận:
Tổng của dãy số 1.4 + 4.7 + 7.10 + ... + 97.100 là 333632.
Tính nhanh: \(\frac{3^2}{1.4}+\frac{3^2}{4.7}+\frac{3^2}{7.10}+\frac{3^2}{10.13}+\frac{3^2}{13.16}+...+\frac{3^2}{97.100}\)
\(\frac{3^2}{1.4}+\frac{3^2}{4.7}+\frac{3^2}{7.10}+\frac{3^2}{10.13}+...+\frac{3^2}{97.100}\)
\(=3.\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+\frac{3}{10.13}+...+\frac{3}{97.100}\right)\)
\(=3.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{97}-\frac{1}{100}\right)\)
\(=3.\left(1-\frac{1}{100}\right)\)
\(=3.\frac{99}{100}\)
A=1.4+4.7+7.10+...+97.100
\(A=1.4+4.7+7.10+....+97.100\)
\(2A=2.8+8.14+14.20+...+194.200\)
\(2A=2\left(1.4+4.7+7.10+...+97.100\right)\)
\(2A-A=2\left(1.4+4.7+...+97.100\right)-\left(1.4+4.7+...+97.100\right)\)
\(\Rightarrow A=2\)
Vậy.....
\(\dfrac{2}{1.4}+\dfrac{2}{4.7}+...+\dfrac{2}{97.100}\)
\(\dfrac{2}{1.4}+\dfrac{2}{4.7}+...+\dfrac{2}{97.100}\)
=> \(\dfrac{2.3}{1.4}+\dfrac{2.3}{4.7}+...+\dfrac{2.3}{97.100}\)
=> \(2.\left(\dfrac{3}{1.4}+\dfrac{3}{4.7}+...+\dfrac{3}{97.100}\right)\)
=> \(2.\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{97}-\dfrac{1}{100}\right)\)
=> \(2.\left(1-\dfrac{1}{100}\right)\)
=>\(2\).\(\dfrac{99}{100}\)
=\(\dfrac{99}{50}\)
a = 2/1.4+2/4.7 +4/7.10 +... + 2/97.100
=2/3(3/1*4+3/4*7+...+3/97*100)
=2/3(1-1/4+1/4-1/7+...+1/97-1/100)
=2/3*99/100
=198/300
=66/100
=33/50