Cho a+b+c=0 . CM : a^3 + b^3 + a^2.c + b^2.c - abc = 0
Bài 2: cho a,b,c = 0. Cm : a^3+a^2.c- abc + b^2.c + b^3 =0
\(a^3+a^2c-abc+b^2c+b^3=0\)
\(=a^2.\left(a+b+c\right)-a^2b-abc+b^2c+b^3\)
\(=a^2.\left(a+b+c\right)+b^2.\left(a+b+c\right)-ab^2-abc-a^2b\)
\(=a^2.\left(a+b+c\right)+b^2.\left(a+b+c\right)-ab.\left(a+b+c\right)\)
\(=\left(a+b+c\right).\left(a^2-ab+b^2\right)\)
\(=0\) ( Đpcm )
Cho a,b,c>0, abc=0
CM: 1/a^3(b+c)+1/b^3(a+c)+1/c^3(a+b)=>3/2
abc = 1 mới đúng nhớ, nếu đúng thế thì mình mới giải!
Bài 1:Cho 0<=a;b;c<=2.a+b+c=3
CM:3<=a^3+b^3+c^3-3(a-1)(b-1)(c-1)<=9
Bài 2: Cho -1<=a;b;c<=2.a+b+c=0.CM:
a,a^2+b^2+c^2<=6
b,2abc<=a^2+b^2+c^2<=2abc+2
c,a^2+b^2+c^2<=8-abc
Bài 1
Đặt \(A=a^3+b^3+c^3-3(a-1)(b-1)(c-1)\)
Biến đổi:
\(A=a^3+b^3+c^3-3[abc-(ab+bc+ac)+a+b+c-1]=a^3+b^3+c^3-3abc+3(ab+bc+ac)-6\)
\(A=(a+b+c)^3-3[(a+b)(b+c)(c+a)+abc]-6+3(ab+bc+ac)\)
\(A=21-3(a+b+c)(ab+bc+ac)+3(ab+bc+ac)=21-6(ab+bc+ac)\)
Áp dụng BĐT Am-Gm:
\(3(ab+bc+ac)\leq (a+b+c)^2=9\Rightarrow ab+bc+ac\leq 3\)
\(\Rightarrow A\geq 21-6.3=3\). Dấu bằng xảy ra khi $a=b=c=1$
Vì \(0\leq a,b,c\leq2\Rightarrow (a-2)(b-2)(c-2)\leq 0\)
\(\Leftrightarrow abc-2(ab+bc+ac)+4\leq 0\Leftrightarrow 2(ab+bc+ac)\geq 4+abc\geq 0\Rightarrow ab+bc+ac\geq 2\)
\(\Rightarrow A\leq 21-6.2=9\). Dấu bằng xảy ra khi $(a,b,c)=(0,1,2)$ và các hoán vị.
Bài 2a)
Ta có
\(A=a^2+b^2+c^2=(a+1)^2+(b+1)^2+(c+1)^2-3-2(a+b+c)\)
\(\Leftrightarrow A=(a+b+c+3)^2-2[(a+1)(b+1)+(b+1)(c+1)+(c+1)(a+1)]-3\)
\(\Leftrightarrow A=6-2[(a+1)(b+1)+(b+1)(c+1)+(c+1)(a+1)]\)
Vì \(-1\leq a,b,c\leq 2\Rightarrow a+1,b+1,c+1\geq 0\)
\(\Rightarrow (a+1)(b+1)+(b+1)(c+1)+(c+1)(a+1)\geq 0\Rightarrow A\leq 6\)
Dấu bằng xảy ra khi \((a,b,c)=(-1,-1,2)\) và các hoán vị của nó
Câu 2b)
Đặt \((a,b,c)\mapsto(x-1,y-1,z-1)\)
Khi đó ta có \(0\leq x,y,z\leq 3,x+y+z=3\)
Cần cm
\(2(x-1)(y-1)(z-1)\leq (x-1)^2+(y-1)^2+(z-1)^2\leq 2(x-1)(y-1)(z-1)+2\)
Vế đầu:
Khai triển kết hợp với $x+y+z=3$ thì \(\text{BĐT}\Leftrightarrow xyz\leq 1\)
Điều này đúng vì theo AM-GM cho số không âm thì \(3=x+y+z\geq 3\sqrt[3]{xyz}\rightarrow xyz\leq 1\)
Ta có đpcm. Dấu bằng xảy ra khi $x=y=z=1$ hay $a=b=c=0$
Vế sau:
Tương tự phần trên \(\text{BĐT}\Leftrightarrow xyz\geq 0\) ( luôn đúng do $x,y,z\geq 0$)
Dấu bằng xảy ra khi $(x,y,z)=(2,-1,-1)$ và hoán vị
Lưu ý: "Khi" khác với "khi và chỉ khi"- nghĩa là chỉ nêu 1TH chứ chưa quét hết toàn bộ điểm rơi
cho a+b+c=0
cm a3+a2c - abc +b2c+b3=0
1.
Cho -1<=a;b;c<=2.a+b+c=0.CM:
a,a^2+b^2+c^2<=6
b,2abc<=a^2+b^2+c^2<=2abc+2
c,a^2+b^2+c^2<=8-abc
2,
Cho 0<=a;b;c<=2.a+b+c=3
CM:3<=a^3+b^3+c^3-3(a-1)(b-1)(c-1)<=9
cho a+b+c=0 CM a3+b3+c(a2+b2)=abc
Vì a+b+c=0\(\Rightarrow c=-\left(a+b\right)\)
Ta có:\(a^3+b^3+c\left(a^2+b^2\right)=\left(a+b\right)\left(a^2-ab+b^2\right)+c\left(a^2+b^2\right)\)
\(=\left(a+b\right)\left(a^2-ab+b^2\right)-\left(a+b\right)\left(a^2+b^2\right)=\left(a+b\right).\left(-ab\right)=\left(-c\right).\left(-ab\right)=abc\)
\(\Rightarrowđpcm\)
a/ Cho abc khác 0 và a+b+c=1/a+1/b+1/c. C/m b(a^2-bc)(1-ac)=a(1-bc)(b^2-ac)
b/ Cho abc khác 0 và (a+b+c)2 = a2+b2+c2. C/m 1/a3 +1/b3 +1/c3 =
3/abc
Cập nhật: a/ Cho abc khác 0 và a+b+c=1/a+1/b+1/c. C/m b(a^2-bc)(1-ac)=a(1-bc)(b^2-ac)
b/ Cho abc khác 0 và (a+b+c)2 = a2+b2+c2. C/m 1/a^3 +1/b^3 +1/c^3 =
3/abc
Cho (a+b+c)2=3.(ab+bc+ac) với a, b, c khác 0
Cm (a+b)(b+c)(c+a)/abc=8
\(pt\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Rightarrow a=b=c\Leftrightarrow\dfrac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=8\)
(a+b+c)^2=a^2+b^2+c^2
và a,b,c khác 0
CM:1/a^3 +1/b^3 +1/c^3 =3/abc