\(pt\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Rightarrow a=b=c\Leftrightarrow\dfrac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=8\)
\(pt\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Rightarrow a=b=c\Leftrightarrow\dfrac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=8\)
Bài 1 : Giải toán bằng cách lập phương trình :
1 ) Anh Tâm đi từ A đến B với vận tốc 24km/h . Lúc từ B về A , anh có công việc cần đi theo đường khác dài hơn quãng đường lúc đi 5 km . Do vận tốc của anh lúc về là 30km/h nên thời gian vẫn ít hơn thời gian đi là 40 phút . Tính quãng đường AB lúc đi.
2) Một người đi xe đạp từ A đến B với vận tốc 18km/h . Lúc trở về do mệt nên vận tốc chỉ đạt 15km/h , vì thế thời về nhiều hơn thời gian đi là 24 phút . Tính quãng đường AB .
3) Một học sinh đi bộ từ nhà đến trường mất 50 phút . Nếu đi xe đạp mất 0,3 giờ . Tính đoạn đường từ nhà đến trường ? Biết rằng xe đạp đi nhanh hơn đi bộ là 8km/h .
4) Mẫu số của một phân số lớn hơn từ của nó là 3 đơn vị . Nếu tăng cả tử và mẫu của nó thêm 2 đơn vị thì được phân số mới bằng 1/2 . Tìm phân số ban đầu
Bài 2 :
1) Cho hình chữ nhật ABCD có AD = 6cm , AB = 8cm và hai đường chéo cắt nhau tại O . Qua D kẻ đường thẵng d vuông góc với DB , d cắt tia BC tại E .
a) Chứng minh rằng tam giác BDE đồng dạng với tam giác DCE
b) Kẻ CH vuông góc với DE tại H . Chứng minh DC^2 = CH . DB
c) Gọi K là giao điểm của OE và IC . Chứng minh K là trung điểm HC
d) Tính tỷ số diện tích tam giác EHC / diện tích tam giác EDB
2) Cho tam giác ABC có ba góc nhọn , hai đường cao BD và CE của tam giác cắt nhau tại H ( D thuộc AC , E thuộc AB ) . Chứng minh rằng :
a) AB . AE = AC . AD
b) Góc AED = Góc ACB
c) BH . BD + CH . CE = BC^2
3) Cho tam giác ABC có AB = 2cm ; AC = 4 cm .Qua B dựng đường thẳng cắt đoạn thẳng AC tại D sao cho góc ABD = góc ACB
a) Chứng minh tam giác ABD đồng dạng với tam giác ACB
b) Tính AD , Dc
c) Gọi AH là đường cao của tam giác ABC , AE là đường cao của tam giác ABD . Chứng tỏ diện tích tam giác ABH = 4 . diện tích tam giác ADE
4) Cho tam giác ABC vuông tại A , kẻ đường cao AH ( H thuộc BC ) , biết AB = 9cm , AC = 12cm . Gọi M,N lần lượt là trung điểm của AB , AC
a) Chứng minh rằng tam giác AMN đồng dạng với tam giác ABC
b) Tính độ dài đoạn thẳng BC , AH
c) Qua N kẻ NP// AB ( P thuộc BC ) . Chứng minh rằng diện tích tam giác NPC / diện tích tam giác ABC = 1/4
cho tam giác abc có 3 góc nhọn 2 đường cao BE và CF cắt nhau tại H
a,CM tam giác AEB ~ tam giác AFC
b, CM tam giác AEF ~ tam giác ABC
c, Tia AH cắt BC tại D chứng minh FC là tia phân giác của góc DFE
d, Đường thẳng vuông góc với AB tại B cắt đường thẳng vuông góc với AC tại C ở M. Gọi O là trung điểm của BC, I là trung điểm của AM. So sánh diện tích của 2 tam giác AHM và tam giác IOM
cho A Cho tam giác ABC vuông tại A AC = 8 cm BC = 10 cm Lấy hai điểm M và N lần lượt hai cạnh AC và BC sao cho cm = 2 cm CN = 2,5 cm
A.Chứng minh MN song song với BC
b. tính MN
C .qua a kẻ đường thẳng vuông góc BC tại H và cắt MN tại D Chứng minh tam giác AHM đồng dạng với tam giác ACD
D. Chứng minh dm xdn bằng dây a nhân VH E Chứng minh DC² = CN x CH + DN x BM
Cho tam giác ABC vuông tại A, đường cao AH.
a. Chứng minh hai tam giác HBA và HAC đồng dạng với nhau.
b. Chứng minh: AH.BC=AB.AC
c. Cho biết AB=12cm,AC=16cm. Tính độ dài đường cao AH và diện tích tam giác ABC.
d. Giả sử một đường thẳng a song song với cạnh AC cắt các cạnh AB, BC theo thứ tự tại M, N. Xác định vị trí của điểm M để diện tích tứ giác AMNC bằng 8 lần diện tích tam giác BMN.
Cho tam giác ABC vuông tại A, AB = 8cm, AC = 6m, AD là tia phân giác góc A, D thuộc BC.
a. Tính \(\dfrac{DB}{DC}\).
b. Kẻ đường cao AH ( H thuộc BC ).
chứng minh rằng: tam giác AHB đồng dạng tam giác CHA
c. Tính\(\dfrac{S_{tamgiacAHB}}{S_{tamgiacCHA}}\)
Cho tam giác nhọn ABC có AB < AC. Kẻ đường cao BE và CF.
a) Cm tam giác ABC đồng dạng tam giác AFC suy ra AB.AF=AC.AE
b) Kéo dài EF và CB cắt nhau tại S. Cm SB.SC=SF.SE
c) Gọi H là giao điểm của BE và CF . AH cắt BC tại K. CM HK/AK + HE/BE + HF/CF=1
Cho tam giác ABC vuông tại A, biết AB=3cm,AC=4cm;đường cao AH(H thuộc cạnh BC), đường phân giác BD(D thuộc cạnh AC).Gọi I là giao điểm của AH và BD. a) C/m:Tam giác ABD ~ tam giác HBI b) C/m:Tam giác AID là tâm giác cân
Bài 9. Cho tam giác ABC vuông tại A. Có AB = a. Gọi M, N, D lần lượt là trung điểm của AB, BC, AC.
a) Chứng minh ND là đường trung bình của tam giác ABC và tính độ dài ND theo a.
b) Chứng minh tứ giác ADNM là hình chữ nhật.
c) Gọi Q là điểm đối xứng của N qua M. Chứng minh AQBN là hình thoi.
d) Trên tia đối của tia BD lấy điểm K sao cho DK = KB. Chứng minh ba điểm Q, A, K thẳng hàng.