TÌM X:
\(\left(3^x\right)^2:3^2=\frac{1}{729}\)
tìm x biết : a,\(\frac{x^7}{81}=27\); b,\(\frac{x^8}{9}=729\); c.\(^{\left[x-\frac{1}{2}\right]^0}\); d,\(\left[X-2\right]^2=1\); e, \(\left[2X-1\right]^3=8\); f,\(\left[X+\frac{1}{2}\right]^2\)=\(\frac{1}{16}\)
1. Tìm x\(\inℚ\), biết:
a)\(\left(x-\frac{1}{2}\right)2=0\)
b)\(\left(x-2\right)^2=1\)
c) \(\left(2x-1\right)^3=-8\)
d)\(\left(x+\frac{1}{2}\right)^2=\frac{1}{16}\)
e)\(\frac{x^7}{81}=27\)
g)\(\frac{x^8}{9}=^{729}\)
Tìm x, biết:
a)\(x:{\left( {\frac{{ - 1}}{2}} \right)^3} = - \frac{1}{2};\) b)\(x.{\left( {\frac{3}{5}} \right)^7} = {\left( {\frac{3}{5}} \right)^9};\)
c)\({\left( {\frac{{ - 2}}{3}} \right)^{11}}:x = {\left( {\frac{{ - 2}}{3}} \right)^9};\) d)\(x.{\left( {0,25} \right)^6} = {\left( {\frac{1}{4}} \right)^8}\)
a)
\(\begin{array}{l}x:{\left( {\frac{{ - 1}}{2}} \right)^3} = - \frac{1}{2}\\x = - \frac{1}{2}.{\left( {\frac{{ - 1}}{2}} \right)^3}\\x = {\left( {\frac{{ - 1}}{2}} \right)^4}\\x = \frac{1}{{16}}\end{array}\)
Vậy \(x = \frac{1}{{16}}\).
b)
\(\begin{array}{l}x.{\left( {\frac{3}{5}} \right)^7} = {\left( {\frac{3}{5}} \right)^9}\\x = {\left( {\frac{3}{5}} \right)^9}:{\left( {\frac{3}{5}} \right)^7}\\x = {\left( {\frac{3}{5}} \right)^2}\\x = \frac{9}{{25}}\end{array}\)
Vậy \(x = \frac{9}{{25}}\).
c)
\(\begin{array}{l}{\left( {\frac{{ - 2}}{3}} \right)^{11}}:x = {\left( {\frac{{ - 2}}{3}} \right)^9}\\x = {\left( {\frac{{ - 2}}{3}} \right)^{11}}:{\left( {\frac{{ - 2}}{3}} \right)^9}\\x = {\left( {\frac{{ - 2}}{3}} \right)^2}\\x = \frac{4}{9}.\end{array}\)
Vậy \(x = \frac{4}{9}\).
d)
\(\begin{array}{l}x.{\left( {0,25} \right)^6} = {\left( {\frac{1}{4}} \right)^8}\\x.{\left( {\frac{1}{4}} \right)^6} = {\left( {\frac{1}{4}} \right)^8}\\x = {\left( {\frac{1}{4}} \right)^8}:{\left( {\frac{1}{4}} \right)^6}\\x = {\left( {\frac{1}{4}} \right)^2}\\x = \frac{1}{{16}}\end{array}\)
Vậy \(x = \frac{1}{{16}}\).
cho biểu thức:A=[6\(\times\left(-\frac{1}{3}\right)^2-3\times\left(-\frac{1}{3}\right)+1\)]\(\div\left(-\frac{1}{3}-1\right)\)
B=\(\left(729-1^3\right)\times\left(729-3^3\right)\times...\times\left(729-125^3\right)\)
hãy so sánh A và B
nhanh lên mai mình phải nộp rồi
Ta có: \(A=\left[6.\left(-\frac{1}{3}\right)^2-3.\left(-\frac{1}{3}\right)+1\right]:\left(\frac{-1}{3}-1\right)\)
\(=\left(6.\frac{1}{9}-\left(-1\right)+1\right):\left(\frac{-4}{3}\right)\)
\(=\left(\frac{2}{3}+2\right).\left(\frac{-3}{4}\right)\)
\(=\frac{8}{3}.\left(-\frac{3}{4}\right)\)
\(=-2\)
\(B=\left(729-1^3\right)\left(729-3^3\right)...\left(729-125^3\right)\)
\(\Rightarrow B=\left(729-1^3\right)\left(729-3^3\right)...\left(729-9^3\right)...\left(729-125^3\right)\)
\(\Rightarrow B=\left(729-1^3\right)\left(729-3^3\right)...0...\left(729-125^3\right)\)
\(\Rightarrow B=0\)
Vì -2 < 0 nên A < B
Vậy A < B
Baif 1
a)\(\frac{1}{42}.16^x=8^x\)
b)\(3^{-3}.3^5.3^x=3^8\)
c)\(\left(7x+2\right)^{-1}=3^{-2}\)
Bài 2
a)\(3^4.\frac{1}{729}.81^3.\frac{1}{9^2}\)
b)\(\left(8.2^5\right):\left(2^4.\frac{1}{32}\right)\)
c)\(12^8.9^{12}\)
d)\(\left(1+\frac{2}{3}-\frac{1}{4}\right).\left(\frac{4}{5}-\frac{3}{4}\right)^2\)
Giups mik nha
Câu a) số lớn lắm
b) \(3^{-3}\cdot3^5\cdot3^x=3^8\)
=> \(\frac{1}{27}\cdot3^5\cdot3^x=3^8\)
=> \(\frac{1}{27}\cdot3^x=3^3\)
=> \(3^x=3^3:\frac{1}{27}=3^3:\left(\frac{1}{3}\right)^3=3^3:\frac{1^3}{3^3}=3^3\cdot3^3=3^6\)
=> x = 6
b) \(\left(7x+2\right)^{-1}=3^{-2}\)
=> \(\frac{1}{7x+2}=\frac{1}{9}\)
=> 7x + 2 = 9
=> 7x = 7
=> x = 1
Bài 2:
a) \(3^4\cdot\frac{1}{729}\cdot81^3\cdot\frac{1}{9^2}\)
\(=3^4\cdot\left(\frac{1}{3}\right)^6\cdot\left(3^4\right)^3\cdot\left(\frac{1}{3}\right)^4\)
\(=3^4\cdot\left(\frac{1}{3}\right)^6\cdot3^{12}\cdot\left(\frac{1}{3}\right)^4=3^{16}\cdot\left(\frac{1}{3}\right)^{10}=\frac{3^{16}}{3^{10}}=3^6\)
b) \(\left(8\cdot2^5\right):\left(2^4\cdot\frac{1}{32}\right)=\left(2^3\cdot2^5\right):\left(2^4\cdot\left(\frac{1}{2}\right)^5\right)\)
\(=2^8:\left(2^4\cdot\frac{1^5}{2^5}\right)=2^8:\left(\frac{2^4}{2^5}\right)=2^8:2^{-1}=512\)
c) \(12^8\cdot9^{12}=\left(2^2\cdot3\right)^8\cdot\left(3^2\right)^{12}=2^{16}\cdot3^8\cdot3^{24}=2^{16}\cdot3^{32}\)
d) Tương tự
Trả lời rõ cho mik có đc k mn
\(3^X×3^2=729\:\:\:\:\:\:\\ 5^X×625=3125\\ \left(2X+1\right)^3=27\\ ^{ }\)
Tìm x
3^ x . 3^ 2= 729
3^ x . 9 = 729
3^ x = 729: 9
3^x =81
vậy x = 3^3
5^ x . 625 = 3125
5^x = 3125:625
5^x = 5
vậy x = 1
( 2x+1 )^ 3 = 27
( 2x+1) ^ 3 = 3^3
vậy 2x+1 = 3
vậy x = 0
Bài 1: Tìm x
a) \(\left(x-2\right)^4=256\)
b) \(\frac{x^4}{256}=81\)
c) \(125\left(x+\frac{4}{5}\right)^3=729\)
e) \(7^x+2+7x=50\)
f) \(9.13^{x-1}+\frac{4}{169}.13^{x+1}=2197\)
a)(x-2)^4=4^4
=(x-2)=4 sr x=4+2
sr x=6
xin lỗi nha mình chỉ biết làm bài a thôi mong cậu thông cảm và kb với mình nhé
Mình biết bài nào làm bài đó thôi nhé
a) (x-2)4 = 256
=> x-2 = 4
x = 4+2
x = 6
b) \(\frac{x^4}{256}=81\)
\(\Rightarrow\frac{x^4}{4^4}=3^4\)
Từ đây có thể làm theo 2 cách khác nhau
C1 : \(\frac{x^4}{4^4}=81\)
\(\Rightarrow\left(\frac{x}{4}\right)^4=81\)
\(\Rightarrow\frac{x}{4}=3\)
x = 3.4
x = 12
C2 : \(\frac{x^4}{4^4}=3^4\)
=> x4 = 34.44
x4 = (3.4)4
x4 = 124
<=> x = 4
c) \(125.\left(x+\frac{4}{5}\right)^3=729\)
\(\left(x+\frac{4}{5}\right)^3=729:125\)
\(\left(x+\frac{4}{5}\right)^3=5,832\)
\(\Rightarrow x+\frac{4}{5}=1,8=\frac{9}{5}\)
\(x=\frac{9}{5}-\frac{4}{5}\)
\(x=\frac{5}{5}=1\)
Tìm x : \(\frac{\left(x-3\right)^2}{2}-1\frac{1}{3}\left(x+2\right)^2-\frac{5}{4}\left(x-1\right)\left(x+1\right)=1\frac{1}{2}x\left(x-2\right)-x-4\)
\(\Leftrightarrow\dfrac{1}{2}x^2-3x-\dfrac{9}{2}-\dfrac{4}{3}\left(x^2+4x+4\right)-\dfrac{5}{4}\left(x^2-1\right)=\dfrac{3}{2}x\left(x-2\right)-x-4\)
\(\Leftrightarrow\dfrac{1}{2}x^2-3x-\dfrac{9}{2}-\dfrac{4}{3}x^2-\dfrac{16}{3}x-\dfrac{16}{3}-\dfrac{5}{4}x^2+\dfrac{5}{4}=\dfrac{3}{2}x^2-3x-x-4\)
\(\Leftrightarrow x^2\cdot\dfrac{-25}{12}-\dfrac{25}{3}x-\dfrac{103}{12}-\dfrac{3}{2}x^2+4x+4=0\)
\(\Leftrightarrow\dfrac{-43x^2}{12x}-\dfrac{13x}{3}-\dfrac{55}{12}=0\)
\(\Leftrightarrow43x^2+52x+55=0\)
\(\text{Δ}=52^2-4\cdot43\cdot55=-6756< 0\)
Do đó: Phương trình vô nghiệm
tìm x biết
\(\frac{1}{\left(x-1\right)x}+\frac{1}{\left(x-2\right)\left(x-1\right)}+\frac{1}{\left(x-3\right)\left(x-2\right)}+\frac{1}{\left(x-4\right)\left(x-3\right)}=\frac{x}{x^2-4x}\)