Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyễn quỳnh lưu
Xem chi tiết
Nguyễn Bá Hiếu
Xem chi tiết
Akai Haruma
30 tháng 9 2017 lúc 22:10

Lời giải:

Đặt \(\sqrt{6x-1}=a;\sqrt{9x^2-1}=b\). Khi đó :

\(6x-9x^2=a^2-b^2\)

PT tương đương:

\(a+b=a^2-b^2\)

\(\Leftrightarrow (a+b)[1-(a-b)]=0\)

\(\Leftrightarrow \) \(\left[{}\begin{matrix}a+b=0\\a-b=1\end{matrix}\right.\)

+) Nếu \(a+b=0\Leftrightarrow \sqrt {6x-1}+\sqrt{9x^2-1}=0\)

\(\sqrt{6x-1}\geq 0; \sqrt{9x^2-1}\geq 0\) nên điều trên xảy ra khi mà

\(\sqrt{6x-1}=\sqrt{9x^2-1}=0\) (vô lý)

+) Nếu \(a-b=1\Leftrightarrow \sqrt{6x-1}-\sqrt{9x^2-1}=1\)

\(\Leftrightarrow \sqrt{6x-1}=\sqrt{9x^2-1}+1\)

\(\Leftrightarrow 6x-1=9x^2-1+1+2\sqrt{9x^2-1}\)

\(\Leftrightarrow 9x^2-6x+1+2\sqrt{9x^2-1}=0\)

\(\Leftrightarrow (3x-1)^2+2\sqrt{(3x-1)(3x+1)}=0\)

\((3x-1)^2\geq 0; \sqrt{(3x-1)(3x+1)}\geq 0\) nên điều trên xảy ra khi mà:

\((3x-1)^2=\sqrt{(3x-1)(3x+1)}=0\Leftrightarrow x=\frac{1}{3}\)

Thử lại thấy đúng.

Vậy \(x=\frac{1}{3}\)

Kathy Nguyễn
Xem chi tiết
Luân Đào
20 tháng 1 2019 lúc 11:42

a.

\(\sqrt{4x^2+4x+1}-\sqrt{25x^2+10x+1}=0\)

\(\Leftrightarrow\sqrt{\left(2x+1\right)^2}-\sqrt{\left(5x+1\right)^2}=0\)

\(\Leftrightarrow2x+1-\left(5x+1\right)=0\)

\(\Leftrightarrow-3x=0\Leftrightarrow x=0\)

b.

\(\sqrt{x^4-16x^2+64}=\sqrt{25x^2+10x+1}\)

\(\Leftrightarrow\sqrt{\left(x^2-8\right)^2}=\sqrt{\left(5x+1\right)^2}\)

\(\Leftrightarrow x^2-8=5x+1\)

\(\Leftrightarrow x^2-5x+\dfrac{25}{4}=\dfrac{61}{4}\)

\(\Leftrightarrow\left(x-\dfrac{5}{2}\right)^2=\dfrac{61}{4}\)

............................

tương tự ..

Nguyễn Lê Phước Thịnh
3 tháng 1 2023 lúc 14:13

c: \(\Leftrightarrow\sqrt{x-5}\left(\sqrt{x+5}-1\right)=0\)

=>x-5=0 hoặc x+5=1

=>x=-4 hoặc x=5

d: \(\Leftrightarrow\sqrt{2x+3}\left(\sqrt{2x-3}-2\right)=0\)

=>2x+3=0 hoặc 2x-3=4

=>x=7/2 hoặc x=-3/2

e: \(\Leftrightarrow\sqrt{x-2}\left(1-3\sqrt{x+2}\right)=0\)

=>x-2=0 hoặc 3 căn x+2=1

=>x=2 hoặc x+2=1/9

=>x=-17/9 hoặc x=2

Pham Hoàng Lâm
Xem chi tiết
Trần Thị Loan
5 tháng 8 2015 lúc 7:26

Điều kiện: 6x - 1 \(\ge\) 0 và 9x2 - 1 \(\ge\) 0 

=> x \(\ge\) 1/6 và (3x -1).(3x+ 1) \(\ge\) 0 => x\(\ge\) 1/6 và 3x - 1\(\ge\) 0 => x\(\ge\)1/3

PT <=> \(\left(\sqrt{6x-1}-1\right)+\sqrt{\left(3x-1\right)\left(3x+1\right)}=0\)

<=> \(\frac{\left(\sqrt{6x-1}-1\right)\left(\sqrt{6x-1}+1\right)}{\sqrt{6x-1}+1}+\sqrt{\left(3x-1\right)\left(3x+1\right)}=0\)

<=> \(\frac{2.\left(3x-1\right)}{\sqrt{6x-1}+1}+\sqrt{\left(3x-1\right)}.\sqrt{3x+1}=0\)

<=> \(\left(\frac{2.\sqrt{3x-1}}{\sqrt{6x-1}+1}+\sqrt{3x+1}\right).\sqrt{3x-1}=0\)

<=> \(\frac{2.\sqrt{3x-1}}{\sqrt{6x-1}+1}+\sqrt{3x+1}=0\) hoặc \(\sqrt{3x-1}=0\)

+) \(\sqrt{3x-1}=0\) => x= 1/3 (thỏa mãn)

+) \(\frac{2.\sqrt{3x-1}}{\sqrt{6x-1}+1}+\sqrt{3x+1}=0\) Vô nghiệm Vì Với x \(\ge\) 1/3

=>  \(\frac{2.\sqrt{3x-1}}{\sqrt{6x-1}+1}+\sqrt{3x+1}\ge0+\sqrt{3.\frac{1}{3}+1}=\sqrt{2}>0\)

Vậy PT đã cho có 1 nghiệm là x = 1/3

Đinh Thị Ngọc Anh
Xem chi tiết
trần thị hương trinh
Xem chi tiết
s2 Lắc Lư  s2
15 tháng 5 2017 lúc 20:59

đề sai r,,,,,,cái kia phải là x^2-x+1 chứ

nếu đúng như tôi thì bạn chỉ cần cho cái 2 vào trong căn rồi nhân liên hợp là ok

trần thị hương trinh
27 tháng 5 2017 lúc 21:32

yes..thanks

Nhat Hao Pham
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 5 2022 lúc 22:07

Sửa đề: \(\sqrt{x-5}+\dfrac{1}{3}\sqrt{9x-45}=\dfrac{1}{5}\sqrt{25x-125}+6\)

\(\Leftrightarrow\sqrt{x-5}+\dfrac{1}{3}\cdot3\cdot\sqrt{x-5}-\dfrac{1}{5}\cdot5\sqrt{x-5}=6\)

\(\Leftrightarrow\sqrt{x-5}=6\)

=>x-5=36

hay x=41

泉国堂
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 7 2023 lúc 16:37

a: =>2*căn x+5+căn x+5-1/3*3*căn x+5=4

=>2*căn(x+5)=4

=>căn (x+5)=2

=>x+5=4

=>x=-1

b: =>\(6\sqrt{x-1}-3\sqrt{x-1}-2\sqrt{x-1}+\sqrt{x-1}=16\)

=>2*căn x-1=16

=>x-1=64

=>x=65

Hà Quang Minh
28 tháng 7 2023 lúc 16:50

c, \(\sqrt{\left(x-3\right)^2}-2\sqrt{\left(x-1\right)^2}+\sqrt{x^2}=0\\ \Leftrightarrow\left|x-3\right|-2\left|x-1\right|+\left|x\right|=0\left(1\right)\)

TH1\(x\ge3\)

\(\left(1\right)\Rightarrow x-3-2x+2+x=0\\ \Leftrightarrow-1=0\left(loại\right)\)

TH2\(2\le x< 3\)

\(\left(1\right)\Rightarrow3-x-2x+2+x=0\\ \Leftrightarrow-2x=-5\\ \Leftrightarrow x=\dfrac{5}{2}\left(tm\right)\)

TH3\(0\le x< 2\)

\(\left(1\right)\Rightarrow3-x+2x-2+x=0\\ \Leftrightarrow2x=1\\ \Leftrightarrow x=\dfrac{1}{2}\left(tm\right)\)

TH4\(x< 0\)

\(\left(1\right)\Rightarrow3-x+2x-2-x-=0\\ \Leftrightarrow1=0\left(loại\right)\)

Vậy \(x\in\left\{\dfrac{1}{2};\dfrac{5}{2}\right\}\)

Quynh Existn
Xem chi tiết
missing you =
10 tháng 7 2021 lúc 10:19

a,\(\sqrt{\left(3x-1\right)^2}=5=>|3x-1|=5=>\left[{}\begin{matrix}3x-1=5\\3x-1=-5\end{matrix}\right.\)

\(=>\left[{}\begin{matrix}x=2\\x=-\dfrac{4}{3}\end{matrix}\right.\)

b, \(\sqrt{4x^2-4x+1}=3=\sqrt{\left(2x-1\right)^2}=3=>\left[{}\begin{matrix}2x-1=3\\2x-1=-3\end{matrix}\right.\)

\(=>\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)

c, \(\sqrt{x^2-6x+9}+3x=4=>|x-3|=4-3x\)

TH1: \(|x-3|=x-3< =>x\ge3=>x-3=4-3x=>x=1,75\left(ktm\right)\)

TH2 \(|x-3|=3-x< =>x< 3=>3-x=4-3x=>x=0,5\left(tm\right)\)

Vậy x=0,5...

d, đk \(x\ge-1\)

=>pt đã cho \(< =>9\sqrt{x+1}-6\sqrt{x+1}+4\sqrt{x+1}=12\)

\(=>7\sqrt{x+1}=12=>x+1=\dfrac{144}{49}=>x=\dfrac{95}{49}\left(tm\right)\)

Nguyễn Lê Phước Thịnh
10 tháng 7 2021 lúc 10:31

a) Ta có: \(\sqrt{\left(3x-1\right)^2}=5\)

\(\Leftrightarrow\left|3x-1\right|=5\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-1=5\\3x-1=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=6\\3x=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-\dfrac{4}{3}\end{matrix}\right.\)

b) Ta có: \(\sqrt{4x^2-4x+1}=3\)

\(\Leftrightarrow\left|2x-1\right|=3\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-1=3\\2x-1=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=4\\2x=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)

c) Ta có: \(\sqrt{x^2-6x+9}+3x=4\)

\(\Leftrightarrow\left|x-3\right|=4-3x\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=4-23x\left(x\ge3\right)\\x-3=23x-4\left(x< 3\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x+23x=4+3\\x-23x=4+3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{24}\left(loại\right)\\x=\dfrac{-4}{22}=\dfrac{-2}{11}\left(loại\right)\end{matrix}\right.\)