(x-5)mux2=1-3x)mũ2
bài 2: cho đa thức
A(x)=5/6x mũ3 - 12/7x mũ2+5x+5/7x mux2 +1/6x mux3 - 3x+9
Tìm X :
A) x.(x-2)-(x+3).x+7+9x=6
B)(3x-5).(7-5x)-(5x+2).(2-3x)=4
C)(x+2).(x mũ2 -2x+4)-(x.3+3)=14x
D)(x mũ2 -x+1).(x+1)-x mũ3 -3x=2
GẤP MN HỘ E ...!!🙂😣
Giải:
a) \(x\left(x-2\right)-\left(x+3\right).x+7+9x=6\)
\(\Leftrightarrow x^2-2x-\left(x^2+3x\right)+7+9x=6\)
\(\Leftrightarrow x^2-2x-x^2-3x+7+9x=6\)
\(\Leftrightarrow4x=-1\)
\(\Leftrightarrow x=-\dfrac{1}{4}\)
Vậy ...
b) \(\left(3x-5\right)\left(7-5x\right)-\left(5x+2\right)\left(2-3x\right)=4\)
\(\Leftrightarrow21x-35-15x^2+25x-\left(10x+2-15x^2+6x\right)=4\)
\(\Leftrightarrow21x-35-15x^2+25x-10x-2+15x^2-6x=4\)
\(\Leftrightarrow30x-37=4\)
\(\Leftrightarrow30x=41\)
\(\Leftrightarrow x=\dfrac{41}{30}\)
Vậy ...
c) \(\left(x+2\right)\left(x^2-2x+4\right)-\left(x^3+3\right)=14x\) (Sửa đề)
\(\Leftrightarrow x^3+8-x^3-3=14x\)
\(\Leftrightarrow5=14x\)
\(\Leftrightarrow x=\dfrac{5}{14}\)
Vậy ...
d) \(\left(x^2-x+1\right)\left(x+1\right)-x^3-3x=2\)
\(\Leftrightarrow x^3+1-x^3-3x=2\)
\(\Leftrightarrow1-3x=2\)
\(\Leftrightarrow-3x=1\)
\(\Leftrightarrow x=-\dfrac{1}{3}\)
Vậy ...
a) \(x\left(x-2\right)-\left(x+3\right)x+7+9x=6\)
=> \(x^2-2x-x-3x+7+9x=6\)
=> \(x^2-2x-x^2-3x+7+9x=6\)
=> \(\left(x^2-x^2\right)+\left(-2x-3x+9x\right)=6-7\)
=> \(4x=-1\)
Vậy \(x=\dfrac{-1}{4}\)
b) \(\left(3x-5\right)\left(7-5x\right)-\left(5x+2\right)\left(2-3x\right)=4\)
=>\(21x-15x^2-35+25x-10x+15x^2-4+6x=4\)
=> \(\left(21x+25x-10x+6x\right)\)\(+\left(-15x^2+15x^2\right)\)\(=4+35+4\)
=> \(42x=43\)
Vậy \(x=\dfrac{43}{42}\)
c) \(\left(x+2\right)\left(x^2-2x+4\right)-\left(x^3+3\right)=14\)
=> \(x^3-2x^2+4x+2x^2-4x+8-x^3-3\)\(=14x\)
=>\(\left(x^3-x^3\right)+\left(-2x^2+2x^x\right)+\left(4x-4x\right)+\left(8-3\right)\)\(=14x\)
=> \(5=14x\)
Vậy \(x=\dfrac{5}{14}\)
d) \(\left(x^2-x+1\right)\left(x+1\right)-x^3-3x=2\)
=> \(x^3+x^2+x+x^2-x+1-x^3-3x=2\)
=>\(\left(x^3-x^3\right)+\left(-x^2+x^2\right)+\left(x-x-3x\right)=2-1\)
=> \(-3x=1\)
Vậy \(x=\dfrac{-1}{3}\)
1. (X mũ3-1)(X mũ2+1)=0
2. (2X +6)(3X mũ2 -12)=0
\(1.\left(x^3-1\right)\left(x^2+1\right)=0\)
\(< =>\left\{{}\begin{matrix}x^3-1=0\\x^2+1=0\end{matrix}\right.\)
\(< =>\left\{{}\begin{matrix}x^3=1\\x^2=-1\left(kxđ\right)\end{matrix}\right.\)
<=>x=1
vậy ...
\(2.\left(2x+6\right)\left(3x^2-12\right)=0\)
\(< =>\left\{{}\begin{matrix}2x+6=0\\3x^2-12=0\end{matrix}\right.\)
\(< =>\left\{{}\begin{matrix}2x=-6\\3x^2=12\end{matrix}\right.\)
\(< =>\left\{{}\begin{matrix}x=-3\\x^2=4\end{matrix}\right.\)
\(< =>\left\{{}\begin{matrix}x=-3\\x=2\\x=-2\end{matrix}\right.\)
vậy ...
Trong Th này bn nên dùng dấu ''hoặc''
a,\(\left(x^3-1\right)\left(x^2+1\right)=0\)
\(\left[{}\begin{matrix}x^3-1=0\\x^2+1=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x^3=1\\x^2=-1\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=1\\x=\pm1\end{matrix}\right.\)
b, \(\left(2x+6\right)\left(3x^2-12\right)=0\)
\(\left[{}\begin{matrix}2x+6=0\\3x^2-12=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}2x=-6\\3x^2=12\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=-3\\x^2=4\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=-3\\x=\pm2\end{matrix}\right.\)
a,3/x=y/7
B,3x-1/-5=-5/3x-1
C,2x-5/-3=27/(2x-5)mũ2
d,y+3/-2=5/x-6
Cần gấp
b: \(\Leftrightarrow\left(3x-1\right)^2=25\)
\(\Leftrightarrow3x-1\in\left\{5;-5\right\}\)
hay \(x\in\left\{2;-\dfrac{4}{3}\right\}\)
c: \(\Leftrightarrow\left(2x-5\right)^3=-81\)
\(\Leftrightarrow2x-5=-3\sqrt[3]{3}\)
hay \(x=\dfrac{5-\sqrt[3]{3}}{2}\)
(2x+1) mũ2-2. (2x+1). (3x+1) +(3x+1) mũ2
CMR các bt sau có gtri âm với mọi gtri của x
5, E=−x mũ2−3x−5
6, F=−3x mũ2−6x−4
7, G= -5x mũ 2+7x-3
5: \(=-\left(x^2+3x+5\right)\)
\(=-\left(x^2+3x+\dfrac{9}{4}+\dfrac{11}{4}\right)\)
\(=-\left(x+\dfrac{3}{2}\right)^2-\dfrac{11}{4}< 0\)
6: \(=-3\left(x^2+2x+\dfrac{4}{3}\right)=-3\left(x^2+2x+1+\dfrac{1}{3}\right)\)
\(=-3\left(x+1\right)^2-1< 0\)
tìm x biết
a,5x(x-4)3(x+2)(x-4)=2x(x+1)
b,4x(x+2)-x(8x-5)=10
c,(x+3)(2x-5)=2x(x+4)
d,(3x-2)(x+5)-3x(x+4)=5
e,x(x-3)+2x(x+1)=3(x mũ2-4)
b: =>4x^2+8x-8x^2+5x-10=0
=>-4x^2+13x-10=0
=>x=2 hoặc x=5/4
c: =>2x^2-5x+6x-15=2x^2+8x
=>x-15=8x
=>-7x=15
=>x=-15/7
d: =>3x^2+15x-2x-10-3x^2-12x=5
=>x-10=5
=>x=15
e: =>x^2-3x+2x^2+2x=3x^2-12
=>-x=-12
=>x=12
giúp mình giải bài này vs nhé:
TÌM x:a.2x[x-2016]-2x+4032=0
b. 5x[x-3]=x-3 c.[3x-1]mũ2=[x+2]mũ2
\(5x\left(x-3\right)=x-3\)
\(\Rightarrow5x\left(x-3\right)-\left(x-3\right)=0\)
\(\Rightarrow\left(x-3\right)\left(5x-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-3=0\\5x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=\frac{1}{5}\end{cases}}}\)
Bài 1 chứng minh rằng giá trị của biểu thức không phụ thuộc vào giá trị của biến
a, (3x-1) (2x+7)-(x+1) (6x-5) -(18-2)
B,(x-2) (x+1) (2x+1) -x (2x mũ2 -x -5) +1
Bài 1 :
a, \(\left(3x-1\right)\left(2x+7\right)-\left(x+1\right)\left(6x-5\right)-\left(18-2\right)\)
\(=6x^2+19x-7-6x^2-x+5-16=18x-18\)
Vậy biểu thức phụ thuộc biến x
b, \(\left(x-2\right)\left(x+1\right)\left(2x+1\right)-x\left(2x^2-x-5\right)+1\)
\(=\left(x^2-x-2\right)\left(2x+1\right)-x\left(2x^2-x-5\right)+1\)
\(=2x^3+x^2-2x^2-1-4x-2-2x^3+2x+5x+1=-x^2-2+3x\)
Vậy biểu thức phụ thuộc biến x