Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tuấn Nguyễn
Xem chi tiết
Đinh Đức Hùng
Xem chi tiết

Ta có: \(\frac{a+b}{bc+a^2}+\frac{b+c}{ac+b^2}+\frac{c+a}{ab+c^2}\le\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\frac{a+b}{bc+a^2}-\frac{b+c}{ac+b^2}-\frac{c+a}{ab+c^2}\ge0\)

\(\Leftrightarrow\frac{a^4b^4+b^4c^4+c^4a^4-a^4b^2c^2-b^4c^2a^2-c^4a^2b^2}{abc\left(bc+a^2\right)\left(ac+b^2\right)\left(ab+c^2\right)}\ge0\)

\(\Leftrightarrow\frac{2a^4b^4+2b^4c^4+2c^4a^4-2a^4b^2c^2-2b^4c^2a^2-2c^4a^2b^2}{2abc\left(bc+a^2\right)\left(ca+b^2\right)\left(ab+c^2\right)}\ge0\)

\(\Leftrightarrow\frac{\left(a^2b^2-b^2c^2\right)^2+\left(b^2c^2-c^2a^2\right)^2+\left(c^2a^2-a^2b^2\right)^2}{2abc\left(bc+a^2\right)\left(ac+b^2\right)\left(ab+c^2\right)}\ge0\)(Đúng) (do a, b, c>0 )

Pain Thiên Đạo
19 tháng 1 2018 lúc 1:00

bạn ơi mik chỉ làm ngếu ngáo thôi nhé :)) đúng thì đúng mà sai thì thôi nhé :)) cách mình tự chế nhé

đặt \(\frac{a+b}{a^2+bc}+\frac{b+c}{b^2+ac}+\frac{c+a}{c^2+ab}=Pain\)

áp dụng định lí six paths of Pain :) ta có

\(\frac{\left(a+b\right)}{a^2+bc}=\frac{\left(a+b\right)}{\frac{\left(a+b\right)}{\left(a+c\right)}}=\frac{1}{\left(a+c\right)}\) ( định lí Six Paths of Pain ) hì hì  

thay vào ta được :)

\(\frac{1}{a+c}+\frac{1}{b+a}+\frac{1}{c+b}\le\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

áp dụng cô si sáp cho 2 số ta có

\(\frac{1}{a+c}\le\frac{1}{2}\left(\frac{1}{a}+\frac{1}{c}\right)\) luôn đúng

\(\frac{1}{b+a}\le\frac{1}{2}\left(\frac{1}{b}+\frac{1}{a}\right)\) luôn đúng

\(\frac{1}{c+b}\le\frac{1}{2}\left(\frac{1}{c}+\frac{1}{b}\right)\) luôn đúng

cộng các vế lại ta được và rút 2/2 ta được :))

\(Pain\le\frac{1}{2}\left(\frac{2}{a}+\frac{2}{b}+\frac{2}{c}\right)=\frac{2}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

hình như BDT  đã được chứng minh :))

theo bài của bạn Phạm quốc cường ta có :))

\(\frac{a+b}{a^2+bc}+\frac{b+c}{b^2+ac}+\frac{c+a}{c^2+ab}\le\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\) luôn đúng :))

tức là  \(\frac{1}{a+c}+\frac{1}{b+a}+\frac{1}{c+b}=\frac{a+b}{a^2+bc}+\frac{b+c}{b^2+ac}+\frac{c+a}{c^2+ab}\le\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)luôn đúng :))

tức là định Lí six paths of Pain luôn đúng :))

dấu = xảy ra khi nào thì mình éo biết được :))

: các thành phần trẩu tre éo làm thì đừng tích sai cho mình nhé :)) mik ms lớp 7 thôi còn gà lắm :))

Quốc Bảo
Xem chi tiết
Kuro Kazuya
5 tháng 2 2017 lúc 9:00

Áp dụng bất đẳng thức \(\frac{1}{a+b}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\) với a , b > 0

\(\Rightarrow\left\{\begin{matrix}\frac{1}{a+b}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\\\frac{1}{b+c}\le\frac{1}{4}\left(\frac{1}{b}+\frac{1}{c}\right)\\\frac{1}{a+c}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{c}\right)\end{matrix}\right.\)

Cộng theo từng vế:

\(\Rightarrow\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{a+c}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{c}\right)\)

\(\Rightarrow\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\le\frac{1}{4}\left(\frac{2}{a}+\frac{2}{b}+\frac{2}{c}\right)\)

\(\Rightarrow\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\le\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\) ( đpcm )

katherina
5 tháng 2 2017 lúc 10:41

Với a , b , c > 0

Ta có: \(a^2-2ab+b^2\ge0\)

\(\Rightarrow\) \(a^2+2ab+b^2\ge4ab\)

\(\Rightarrow\) \(\left(a+b\right)^2\ge4ab\)

\(\Rightarrow\) \(\frac{a+b}{4ab}\ge\frac{1}{a+b}\)

\(\Rightarrow\) \(\frac{1}{a+b}\le\frac{1}{4b}+\frac{1}{4a}\)

\(\Rightarrow\) \(\frac{1}{a+b}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\)(1)

Chứng minh tương tự ta cũng có được:

\(\frac{1}{b+c}\le\frac{1}{4}\left(\frac{1}{b}+\frac{1}{c}\right)\) (2)

\(\frac{1}{a+c}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{c}\right)\) (3)

Cộng (1), (2), (3) vế theo vế ta được:

\(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{a+c}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{a}+\frac{1}{c}\right)\)

\(\Rightarrow\) \(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{a+c}\le\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)( ĐPCM)

hoàng thị huyền trang
Xem chi tiết
N.T.M.D
Xem chi tiết
Yeutoanhoc
13 tháng 5 2021 lúc 15:36

a)Áp dụng BĐT cosi-schwart:
`A=1/a+1/b+1/c>=9/(a+b+c)`
Mà `a+b+c<=3/2`
`=>A>=9:3/2=6`
Dấu "=" `<=>a=b=c=1/2`
b)Áp dụng BĐT cosi:
`a+1/(4a)>=1`
`b+1/(4b)>=1`
`c+1/(4c)>=1`
`=>a+b+c+1/(4a)+1/(4b)+1/(4c)>=3`
Ta có:
`1/a+1/b+1/c>=6`(Ở câu a)
`=>3/4(1/a+1/b+1/c)>=9/2`
`=>a+b+c+1/(a)+1/(b)+1/(c)>=3+9/2=15/2`
Dấu "=" `<=>a=b=c=1/2`

Thành Trung Nguyễn Danh...
25 tháng 3 2022 lúc 20:04

a)Áp dụng BĐT cosi-schwart:
A=1a+1b+1c≥9a+b+cA=1a+1b+1c≥9a+b+c
Mà a+b+c≤32a+b+c≤32
⇒A≥9:32=6⇒A≥9:32=6
Dấu "=" ⇔a=b=c=12⇔a=b=c=12
b)Áp dụng BĐT cosi:
a+14a≥1a+14a≥1
b+14b≥1b+14b≥1
c+14c≥1c+14c≥1
⇒a+b+c+14a+14b+14c≥3⇒a+b+c+14a+14b+14c≥3
Ta có:
1a+1b+1c≥61a+1b+1c≥6(Ở câu a)
⇒34(1a+1b+1c)≥92⇒34(1a+1b+1c)≥92
⇒a+b+c+1a+1b+1c≥3+92=152⇒a+b+c+1a+1b+1c≥3+92=152
Dấu "=" ⇔a=b=c=12

 

pham trung thanh
Xem chi tiết
datkodstbd
17 tháng 11 2017 lúc 21:23

chịu??? tớ chưa học đến?

Phạm Thị Thùy Linh
10 tháng 4 2019 lúc 12:45

Ê,

Why?

bạn ý cũng đưa câu hỏi lên thui mà 

_Sɧαᴜƞ ⁹⁴²⁰
23 tháng 8 2019 lúc 17:25

@Nguyen Chau Tuan Kiet : Bn ấy đăng câu hỏi, đúng nội quy sao lại phạm luật ?!

Trịnh Tiến Đạt
Xem chi tiết
Trí Tiên亗
5 tháng 2 2020 lúc 15:44

1) Trước hết ta đi chứng minh BĐT : \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)  với \(a,b>0\) (1) 

Thật vậy : BĐT  (1) \(\Leftrightarrow\frac{a+b}{ab}-\frac{4}{a+b}\ge0\)

\(\Leftrightarrow\frac{\left(a+b\right)^2-4ab}{ab\left(a+b\right)}\ge0\)

\(\Leftrightarrow\frac{\left(a-b\right)^2}{ab\left(a+b\right)}\ge0\)  ( luôn đúng )

Vì vậy BĐT (1) đúng.

Áp dụng vào bài toán ta có:

\(\frac{1}{4}\left(\frac{4}{a+b}+\frac{4}{b+c}+\frac{4}{a+c}\right)\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{a}+\frac{1}{c}\right)\)

                                                                 \(=\frac{1}{4}\cdot\left[2.\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\right]=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)

Vậy ta có điều phải chứng minh !

Khách vãng lai đã xóa
Nguyễn Thị Mát
5 tháng 2 2020 lúc 17:33

Bài 1 : 

Áp dụng bất đẳng thức \(\frac{1}{a+b}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\) với a , b > 0

\(\Rightarrow\hept{\begin{cases}\frac{1}{a+b}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\\\frac{1}{b+c}\le\frac{1}{4}\left(\frac{1}{b}+\frac{1}{c}\right)\\\frac{1}{a+c}\le\frac{1}{2}\left(\frac{1}{a}+\frac{1}{c}\right)\end{cases}}\)

Cộng theo từng vế 

\(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{a+c}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{c}\right)\)

\(\Rightarrow\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\le\frac{1}{4}\left(\frac{2}{a}+\frac{2}{b}+\frac{2}{c}\right)\)

\(\Rightarrow\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\le\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)( đpcm)

Khách vãng lai đã xóa
Nguyễn Thị Mát
6 tháng 2 2020 lúc 18:24

2 )

Áp dụng bất đẳng thức Cacuchy - Schwarz :
\(VT=\frac{a^4}{a^2b}+\frac{b^4}{b^2c}+\frac{c^4}{c^2a}\ge\frac{\left(a^2+b^2+c^2\right)^2}{a^2b+b^2c+c^2a}\left(1\right)\)

Vì \(a+b+c=1\)nên 

\(a^2+b^2+c^2=\left(a+b+c\right)\left(a^2+b^2+c^2\right)\)

\(=\left(a^3++ab^2+b^3+bc^2+c^3+ca^2\right)+\left(a^2b+b^2c+c^2a\right)\)

Áp dụng AM - GM 

\(a^3+ab^2\ge2a^2b\). Tương tự cho 2 cặp còn lại suy ra 

\(a^3+b^3+c^3+ab^2+bc^2+ca^2\ge2\left(a^2b+b^2c+c^2a\right)\)

\(\Rightarrow a^2+b^2+c^2\ge3\left(a^2b+b^2c+c^2a\right)\left(2\right)\)

Từ (1) và (2) \(\Rightarrow VT\ge3\left(a^2+b^2+c^2\right)\left(đpcm\right)\)

Dấu " = " xảy ra khi \(a=b=c=\frac{1}{3}\)

Khách vãng lai đã xóa
Le Trang Nhung
Xem chi tiết
Thắng Nguyễn
1 tháng 3 2017 lúc 13:11

mấy bài cơ bản nên cũng dễ, mk có thể giải hết cho bn vs 1 đk : bn đăng từng câu 1 thôi nhé !

Hoàng Phúc
1 tháng 3 2017 lúc 21:04

bài 3 có thể lên gg tìm kỹ thuật AM-GM (cosi) ngược dấu

bài 8 c/m bđt phụ 5b3-a3/ab+3b2 </ 2b-a ( biến đổi tương đương)

những câu còn lại 1 nửa dùng bđt AM-GM , 1 nửa phân tích nhân tử ròi dựa vào điều kiện

huỳnh minh quí
2 tháng 3 2017 lúc 21:20

Bài 3 

\(VT=a-\frac{ab\left(a+b\right)}{a^2+ab+b^2}+b-\frac{bc\left(b+c\right)}{b^2+bc+c^2}+c-\frac{ca\left(c+a\right)}{c^2+ca+a^2}\)

Áp dụng bất đẳng thức Cauchy cho 3 bộ số thực không âm

\(\Rightarrow\hept{\begin{cases}a^2+ab+b^2\ge3ab\\b^2+bc+c^2\ge3bc\\c^2+ca+a^2\ge3ca\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}\frac{ab\left(a+b\right)}{a^2+ab+b^2}\le\frac{a+b}{3}\\\frac{bc\left(b+c\right)}{b^2+bc+c^2}\le\frac{b+c}{3}\\\frac{ca\left(c+a\right)}{c^2+ca+a^2}\le\frac{c+a}{3}\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}a-\frac{ab\left(a+b\right)}{a^2+ab+b^2}\ge a-\frac{a+b}{3}\\b-\frac{bc\left(b+c\right)}{b^2+bc+c^2}\ge b-\frac{b+c}{3}\\c-\frac{ca\left(c+a\right)}{c^2+ca+a^2}\ge c-\frac{c+a}{3}\end{cases}}\)

\(\Rightarrow VT\ge a+b+c-\frac{2\left(a+b+c\right)}{3}\)

\(\Rightarrow VT\ge\frac{a+b+c}{3}\)

\(\Leftrightarrow\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\ge\frac{a+b+c}{3}\)( đpcm )

Nghiêm Thị Nhân Đức
Xem chi tiết
Copxki Minh
2 tháng 12 2020 lúc 22:25

Đặt \(\left(\frac{1}{a},\frac{1}{b},\frac{1}{c}\right)=\left(x,y,z\right)\)

\(x+y+z\ge\frac{x^2+2xy}{2x+y}+\frac{y^2+2yz}{2y+z}+\frac{z^2+2zx}{2z+x}\)

\(\Leftrightarrow x+y+z\ge\frac{3xy}{2x+y}+\frac{3yz}{2y+z}+\frac{3zx}{2z+x}\)

\(\frac{3xy}{2x+y}\le\frac{3}{9}xy\left(\frac{1}{x}+\frac{1}{x}+\frac{1}{y}\right)=\frac{1}{3}\left(x+2y\right)\)

\(\Rightarrow\Sigma_{cyc}\frac{3xy}{2x+y}\le\frac{1}{3}\left[\left(x+2y\right)+\left(y+2z\right)+\left(z+2x\right)\right]=x+y+z\)

Dấu "=" xảy ra khi x=y=z

Khách vãng lai đã xóa