Cho a, b, c > 0. Chứng minh : \(\frac{2}{a+b}+\frac{2}{b+c}+\frac{2}{c+a}\le\frac{1}{a}+\frac{1}{b}+\frac{1}{c}.\)
Cho a, b, c > 0. Chứng minh rằng: \(\frac{a+b}{a^2+bc}+\frac{b+c}{b^2+ac}+\frac{c+a}{c^2+ab}\le\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
Cho a;b;c>0 . Chứng minh rằng : \(\frac{a+b}{a^2+bc}+\frac{b+c}{b^2+ac}+\frac{c+a}{c^2+ab}\le\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
Ta có: \(\frac{a+b}{bc+a^2}+\frac{b+c}{ac+b^2}+\frac{c+a}{ab+c^2}\le\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\frac{a+b}{bc+a^2}-\frac{b+c}{ac+b^2}-\frac{c+a}{ab+c^2}\ge0\)
\(\Leftrightarrow\frac{a^4b^4+b^4c^4+c^4a^4-a^4b^2c^2-b^4c^2a^2-c^4a^2b^2}{abc\left(bc+a^2\right)\left(ac+b^2\right)\left(ab+c^2\right)}\ge0\)
\(\Leftrightarrow\frac{2a^4b^4+2b^4c^4+2c^4a^4-2a^4b^2c^2-2b^4c^2a^2-2c^4a^2b^2}{2abc\left(bc+a^2\right)\left(ca+b^2\right)\left(ab+c^2\right)}\ge0\)
\(\Leftrightarrow\frac{\left(a^2b^2-b^2c^2\right)^2+\left(b^2c^2-c^2a^2\right)^2+\left(c^2a^2-a^2b^2\right)^2}{2abc\left(bc+a^2\right)\left(ac+b^2\right)\left(ab+c^2\right)}\ge0\)(Đúng) (do a, b, c>0 )
bạn ơi mik chỉ làm ngếu ngáo thôi nhé :)) đúng thì đúng mà sai thì thôi nhé :)) cách mình tự chế nhé
đặt \(\frac{a+b}{a^2+bc}+\frac{b+c}{b^2+ac}+\frac{c+a}{c^2+ab}=Pain\)
áp dụng định lí six paths of Pain :) ta có
\(\frac{\left(a+b\right)}{a^2+bc}=\frac{\left(a+b\right)}{\frac{\left(a+b\right)}{\left(a+c\right)}}=\frac{1}{\left(a+c\right)}\) ( định lí Six Paths of Pain ) hì hì
thay vào ta được :)
\(\frac{1}{a+c}+\frac{1}{b+a}+\frac{1}{c+b}\le\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
áp dụng cô si sáp cho 2 số ta có
\(\frac{1}{a+c}\le\frac{1}{2}\left(\frac{1}{a}+\frac{1}{c}\right)\) luôn đúng
\(\frac{1}{b+a}\le\frac{1}{2}\left(\frac{1}{b}+\frac{1}{a}\right)\) luôn đúng
\(\frac{1}{c+b}\le\frac{1}{2}\left(\frac{1}{c}+\frac{1}{b}\right)\) luôn đúng
cộng các vế lại ta được và rút 2/2 ta được :))
\(Pain\le\frac{1}{2}\left(\frac{2}{a}+\frac{2}{b}+\frac{2}{c}\right)=\frac{2}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
hình như BDT đã được chứng minh :))
theo bài của bạn Phạm quốc cường ta có :))
\(\frac{a+b}{a^2+bc}+\frac{b+c}{b^2+ac}+\frac{c+a}{c^2+ab}\le\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\) luôn đúng :))
tức là \(\frac{1}{a+c}+\frac{1}{b+a}+\frac{1}{c+b}=\frac{a+b}{a^2+bc}+\frac{b+c}{b^2+ac}+\frac{c+a}{c^2+ab}\le\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)luôn đúng :))
tức là định Lí six paths of Pain luôn đúng :))
dấu = xảy ra khi nào thì mình éo biết được :))
: các thành phần trẩu tre éo làm thì đừng tích sai cho mình nhé :)) mik ms lớp 7 thôi còn gà lắm :))
Cho a , b , c > 0 Chứng minh rằng: \(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{a+c}\le\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Áp dụng bất đẳng thức \(\frac{1}{a+b}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\) với a , b > 0
\(\Rightarrow\left\{\begin{matrix}\frac{1}{a+b}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\\\frac{1}{b+c}\le\frac{1}{4}\left(\frac{1}{b}+\frac{1}{c}\right)\\\frac{1}{a+c}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{c}\right)\end{matrix}\right.\)
Cộng theo từng vế:
\(\Rightarrow\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{a+c}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{c}\right)\)
\(\Rightarrow\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\le\frac{1}{4}\left(\frac{2}{a}+\frac{2}{b}+\frac{2}{c}\right)\)
\(\Rightarrow\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\le\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\) ( đpcm )
Với a , b , c > 0
Ta có: \(a^2-2ab+b^2\ge0\)
\(\Rightarrow\) \(a^2+2ab+b^2\ge4ab\)
\(\Rightarrow\) \(\left(a+b\right)^2\ge4ab\)
\(\Rightarrow\) \(\frac{a+b}{4ab}\ge\frac{1}{a+b}\)
\(\Rightarrow\) \(\frac{1}{a+b}\le\frac{1}{4b}+\frac{1}{4a}\)
\(\Rightarrow\) \(\frac{1}{a+b}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\)(1)
Chứng minh tương tự ta cũng có được:
\(\frac{1}{b+c}\le\frac{1}{4}\left(\frac{1}{b}+\frac{1}{c}\right)\) (2)
và \(\frac{1}{a+c}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{c}\right)\) (3)
Cộng (1), (2), (3) vế theo vế ta được:
\(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{a+c}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{a}+\frac{1}{c}\right)\)
\(\Rightarrow\) \(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{a+c}\le\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)( ĐPCM)
a) Cho a,b,c>0. chứng minh rằng:\(\frac{a}{3a^2+2b^2+c^2}+\frac{b}{3b^2+2c^2+a^2}+\frac{c}{3c^2+2a^2+b^2}\le\frac{1}{6}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Cho a,b,c >0 thỏa mãn a+b+c\(\le\)\(\frac{3}{2}\).Chứng minh
a,\(\frac{1}{a}\)+\(\frac{1}{b}\)+\(\frac{1}{c}\)\(\ge\)6
b,a+ b+ c+ \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)\(\ge\)\(\frac{15}{2}\)
a)Áp dụng BĐT cosi-schwart:
`A=1/a+1/b+1/c>=9/(a+b+c)`
Mà `a+b+c<=3/2`
`=>A>=9:3/2=6`
Dấu "=" `<=>a=b=c=1/2`
b)Áp dụng BĐT cosi:
`a+1/(4a)>=1`
`b+1/(4b)>=1`
`c+1/(4c)>=1`
`=>a+b+c+1/(4a)+1/(4b)+1/(4c)>=3`
Ta có:
`1/a+1/b+1/c>=6`(Ở câu a)
`=>3/4(1/a+1/b+1/c)>=9/2`
`=>a+b+c+1/(a)+1/(b)+1/(c)>=3+9/2=15/2`
Dấu "=" `<=>a=b=c=1/2`
a)Áp dụng BĐT cosi-schwart:
A=1a+1b+1c≥9a+b+cA=1a+1b+1c≥9a+b+c
Mà a+b+c≤32a+b+c≤32
⇒A≥9:32=6⇒A≥9:32=6
Dấu "=" ⇔a=b=c=12⇔a=b=c=12
b)Áp dụng BĐT cosi:
a+14a≥1a+14a≥1
b+14b≥1b+14b≥1
c+14c≥1c+14c≥1
⇒a+b+c+14a+14b+14c≥3⇒a+b+c+14a+14b+14c≥3
Ta có:
1a+1b+1c≥61a+1b+1c≥6(Ở câu a)
⇒34(1a+1b+1c)≥92⇒34(1a+1b+1c)≥92
⇒a+b+c+1a+1b+1c≥3+92=152⇒a+b+c+1a+1b+1c≥3+92=152
Dấu "=" ⇔a=b=c=12
Cho \(a;b;c>0\). Chứng minh rằng:
\(\frac{a+b}{bc+a^2}+\frac{b+c}{ca+b^2}+\frac{c+a}{ab+c^2}\le\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
Ê,
Why?
bạn ý cũng đưa câu hỏi lên thui mà
@Nguyen Chau Tuan Kiet : Bn ấy đăng câu hỏi, đúng nội quy sao lại phạm luật ?!
1. Cho a , b , c > 0 Chứng minh rằng: \(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{a+c}\le\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
2 . cm bất đẳng thức sau với a,b,c dương thỏa mãn a+b+c=1
\(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\ge3\left(a^2+b^2+c^2\right)\)
1) Trước hết ta đi chứng minh BĐT : \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\) với \(a,b>0\) (1)
Thật vậy : BĐT (1) \(\Leftrightarrow\frac{a+b}{ab}-\frac{4}{a+b}\ge0\)
\(\Leftrightarrow\frac{\left(a+b\right)^2-4ab}{ab\left(a+b\right)}\ge0\)
\(\Leftrightarrow\frac{\left(a-b\right)^2}{ab\left(a+b\right)}\ge0\) ( luôn đúng )
Vì vậy BĐT (1) đúng.
Áp dụng vào bài toán ta có:
\(\frac{1}{4}\left(\frac{4}{a+b}+\frac{4}{b+c}+\frac{4}{a+c}\right)\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{a}+\frac{1}{c}\right)\)
\(=\frac{1}{4}\cdot\left[2.\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\right]=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)
Vậy ta có điều phải chứng minh !
Bài 1 :
Áp dụng bất đẳng thức \(\frac{1}{a+b}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\) với a , b > 0
\(\Rightarrow\hept{\begin{cases}\frac{1}{a+b}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\\\frac{1}{b+c}\le\frac{1}{4}\left(\frac{1}{b}+\frac{1}{c}\right)\\\frac{1}{a+c}\le\frac{1}{2}\left(\frac{1}{a}+\frac{1}{c}\right)\end{cases}}\)
Cộng theo từng vế
\(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{a+c}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{c}\right)\)
\(\Rightarrow\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\le\frac{1}{4}\left(\frac{2}{a}+\frac{2}{b}+\frac{2}{c}\right)\)
\(\Rightarrow\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\le\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)( đpcm)
2 )
Áp dụng bất đẳng thức Cacuchy - Schwarz :
\(VT=\frac{a^4}{a^2b}+\frac{b^4}{b^2c}+\frac{c^4}{c^2a}\ge\frac{\left(a^2+b^2+c^2\right)^2}{a^2b+b^2c+c^2a}\left(1\right)\)
Vì \(a+b+c=1\)nên
\(a^2+b^2+c^2=\left(a+b+c\right)\left(a^2+b^2+c^2\right)\)
\(=\left(a^3++ab^2+b^3+bc^2+c^3+ca^2\right)+\left(a^2b+b^2c+c^2a\right)\)
Áp dụng AM - GM
\(a^3+ab^2\ge2a^2b\). Tương tự cho 2 cặp còn lại suy ra
\(a^3+b^3+c^3+ab^2+bc^2+ca^2\ge2\left(a^2b+b^2c+c^2a\right)\)
\(\Rightarrow a^2+b^2+c^2\ge3\left(a^2b+b^2c+c^2a\right)\left(2\right)\)
Từ (1) và (2) \(\Rightarrow VT\ge3\left(a^2+b^2+c^2\right)\left(đpcm\right)\)
Dấu " = " xảy ra khi \(a=b=c=\frac{1}{3}\)
1. Cho \(a,b>0\). Chứng minh \(\frac{a}{\sqrt{b}}+\frac{b}{\sqrt{a}}\ge\sqrt{a}+\sqrt{b}\)
2. Cho \(a,b,c\in\left[0;1\right].\)Chứng minh \(a\left(1-b\right)+b\left(1-c\right)+c\left(1-a\right)\le1\)
3. Cho \(a,b,c>0\). Chứng minh \(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\ge\frac{a+b+c}{3}\)
4. Cho \(a,b,c>0\)thỏa mãn \(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}\ge2\). Chứng minh \(abc\le\frac{1}{8}\)
5. Cho \(x,y\ge0\)thỏa mãn \(x^3+y^3=2\). Chứng minh \(x^2+y^2\le2\)
6. Cho \(a,b,c\ne0\). Chứng minh \(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\le\frac{a}{c}+\frac{b}{a}+\frac{c}{b}\)
7. Cho \(a,b,c\)là độ dài ba cạnh của tam giác. Chứng minh \(a^2b+b^2c+c^2a+a^2c+b^2a-a^3-b^3-c^3-2abc>0\)
8. Cho \(a,b,c>0\). Chứng minh \(\frac{5b^3-a^3}{ab+3b^2}+\frac{5c^3-b^3}{bc+3c^2}+\frac{5a^3-c^3}{ca+3a^2}\le a+b+c\)
mấy bài cơ bản nên cũng dễ, mk có thể giải hết cho bn vs 1 đk : bn đăng từng câu 1 thôi nhé !
bài 3 có thể lên gg tìm kỹ thuật AM-GM (cosi) ngược dấu
bài 8 c/m bđt phụ 5b3-a3/ab+3b2 </ 2b-a ( biến đổi tương đương)
những câu còn lại 1 nửa dùng bđt AM-GM , 1 nửa phân tích nhân tử ròi dựa vào điều kiện
Bài 3
\(VT=a-\frac{ab\left(a+b\right)}{a^2+ab+b^2}+b-\frac{bc\left(b+c\right)}{b^2+bc+c^2}+c-\frac{ca\left(c+a\right)}{c^2+ca+a^2}\)
Áp dụng bất đẳng thức Cauchy cho 3 bộ số thực không âm
\(\Rightarrow\hept{\begin{cases}a^2+ab+b^2\ge3ab\\b^2+bc+c^2\ge3bc\\c^2+ca+a^2\ge3ca\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}\frac{ab\left(a+b\right)}{a^2+ab+b^2}\le\frac{a+b}{3}\\\frac{bc\left(b+c\right)}{b^2+bc+c^2}\le\frac{b+c}{3}\\\frac{ca\left(c+a\right)}{c^2+ca+a^2}\le\frac{c+a}{3}\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}a-\frac{ab\left(a+b\right)}{a^2+ab+b^2}\ge a-\frac{a+b}{3}\\b-\frac{bc\left(b+c\right)}{b^2+bc+c^2}\ge b-\frac{b+c}{3}\\c-\frac{ca\left(c+a\right)}{c^2+ca+a^2}\ge c-\frac{c+a}{3}\end{cases}}\)
\(\Rightarrow VT\ge a+b+c-\frac{2\left(a+b+c\right)}{3}\)
\(\Rightarrow VT\ge\frac{a+b+c}{3}\)
\(\Leftrightarrow\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\ge\frac{a+b+c}{3}\)( đpcm )
1, cho a,b,c là các số thực dương chứng minh rằng \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{2a+b}{a\left(a+2b\right)}+\frac{2b+c}{b\left(b+2c\right)}+\frac{2c+a}{c\left(a+2c\right)}\)
2,cho x,y,z thỏa mãn x+y+z=5 và xy+yz+xz=8 chứng minh rằng \(1\le x\le\frac{7}{3}\)
3, cho a,b,c>0 chứng minh rằng\(\frac{a^2}{2a^2+\left(b+c-a\right)^2}+\frac{b^2}{2b^2+\left(b+c-a\right)^2}+\frac{c^2}{2c^2+\left(b+a-c\right)^2}\le1\)
4,cho a,b,c là các số thực bất kỳ chứng minh rằng \(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge\left(ab+bc+ac-1\right)^2\)
5, cho a,b,c > 1 và \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\)chứng minh rằng \(\sqrt{a-1}+\sqrt{b-1}+\sqrt{c-1}\le\sqrt{a+b+c}\)
Đặt \(\left(\frac{1}{a},\frac{1}{b},\frac{1}{c}\right)=\left(x,y,z\right)\)
\(x+y+z\ge\frac{x^2+2xy}{2x+y}+\frac{y^2+2yz}{2y+z}+\frac{z^2+2zx}{2z+x}\)
\(\Leftrightarrow x+y+z\ge\frac{3xy}{2x+y}+\frac{3yz}{2y+z}+\frac{3zx}{2z+x}\)
\(\frac{3xy}{2x+y}\le\frac{3}{9}xy\left(\frac{1}{x}+\frac{1}{x}+\frac{1}{y}\right)=\frac{1}{3}\left(x+2y\right)\)
\(\Rightarrow\Sigma_{cyc}\frac{3xy}{2x+y}\le\frac{1}{3}\left[\left(x+2y\right)+\left(y+2z\right)+\left(z+2x\right)\right]=x+y+z\)
Dấu "=" xảy ra khi x=y=z