\(\dfrac{26}{2\sqrt{3}-5}\)
Chứng minh các đẳng thức:
a) \(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)=1
b)\(\dfrac{\left(5+2\sqrt{6}\right)\sqrt{5-2\sqrt{6}}}{\sqrt{2}+\sqrt{3}}\)-1 =0
c) \(\sqrt{26+15\sqrt{3}}+\sqrt{26-15\sqrt{3}}-5\sqrt{\dfrac{3}{2}}=\dfrac{\sqrt{6}}{2}\)
a)\(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}=1\)\(\Leftrightarrow\sqrt{\sqrt{5}-\sqrt{3-\sqrt{\left(2\sqrt{5}-3\right)^2}}}=1\)
\(\Leftrightarrow\sqrt{\sqrt{5}-\sqrt{3-2\sqrt{5}+3}}=1\)
\(\Leftrightarrow\sqrt{\sqrt{5}-\sqrt{6-2\sqrt{5}}}=1\)
\(\Leftrightarrow\sqrt{\sqrt{5}-\sqrt{\left(\sqrt{5}-1\right)^2}}=1\)
\(\Leftrightarrow\sqrt{\sqrt{5}-\sqrt{5}+1}=1\)
\(\Leftrightarrow\sqrt{1}=1\) (đpcm)
\(\dfrac{\left(5+2\sqrt{6}\right)\sqrt{5-2\sqrt{6}}}{\sqrt{2}+\sqrt{3}}-1=0\)
\(\Leftrightarrow\dfrac{\left(\sqrt{3}+\sqrt{2}\right)^2\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}}{\sqrt{2}+\sqrt{3}}-1=0\)
\(\Leftrightarrow\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)-1=0\)
\(\Leftrightarrow\left(\sqrt{3}\right)^2-\left(\sqrt{2}\right)^2-1=0\)
\(\Leftrightarrow3-2-1=0\) (đpcm)
Trục căn thức ở mẫu và rút gọn (nếu được)
a) \(\dfrac{\sqrt{5}-\sqrt{3}}{\sqrt{2}}\)
b) \(\dfrac{26}{5-2\sqrt{3}}\)
c) \(\dfrac{2\sqrt{10}-5}{4-\sqrt{10}}\)
d) \(\dfrac{9-2\sqrt{3}}{3\sqrt{6}-2\sqrt{2}}\)
a. \(\dfrac{\sqrt{5}-\sqrt{3}}{\sqrt{2}}=\dfrac{\sqrt{2}\left(\sqrt{5}-\sqrt{3}\right)}{\sqrt{2}.\sqrt{2}}=\dfrac{\sqrt{10}-\sqrt{6}}{2}\)
b. \(\dfrac{26}{5-2\sqrt{3}}=\dfrac{26\left(5+2\sqrt{3}\right)}{\left(5+2\sqrt{3}\right)\left(5-2\sqrt{3}\right)}=\dfrac{26\left(5+2\sqrt{3}\right)}{13}=2\left(5+2\sqrt{3}\right)=10+4\sqrt{3}\)
c. \(\dfrac{2\sqrt{10}-5}{4-\sqrt{10}}=\dfrac{\left(2\sqrt{10}-5\right)\left(4+\sqrt{10}\right)}{\left(4-\sqrt{10}\right)\left(4+\sqrt{10}\right)}=\dfrac{3\sqrt{10}}{6}=\dfrac{\sqrt{10}}{2}\)
d. \(\dfrac{9-2\sqrt{3}}{3\sqrt{6}-2\sqrt{2}}=\dfrac{\left(9-2\sqrt{3}\right)\left(3\sqrt{6}+2\sqrt{2}\right)}{\left(3\sqrt{6}-2\sqrt{2}\right)\left(3\sqrt{6}+2\sqrt{2}\right)}=\dfrac{23\sqrt{6}}{46}=\dfrac{\sqrt{6}}{2}\)
Rút gọn:
a. \(\left(\sqrt{5+2\sqrt{9\sqrt{5}-19}}-\sqrt{7-\sqrt{5}}\right):2\sqrt{\sqrt{5}-2}\)
b. \(\sqrt{5+2\sqrt{14\sqrt{5}-26}}-\sqrt{4\sqrt{5}-1+\sqrt{80+8\sqrt{5}}}\)
c. \(\dfrac{3+\sqrt{5}}{2\sqrt{2}+\sqrt{3+\sqrt{5}}}+\dfrac{3-\sqrt{5}}{2\sqrt{2}-\sqrt{3-\sqrt{5}}}\)
\(\dfrac{x\sqrt{x}+26\sqrt{x}-19}{x+2\sqrt{x}-3}-\dfrac{2\sqrt{x}}{\sqrt{x}-1}+\dfrac{\sqrt{x}-3}{\sqrt{x+3}}\)
Yêu cầu đề bài là gì bạn nên ghi đầy đủ để được hỗ trợ tốt hơn.
\(\left(\dfrac{1}{2+\sqrt{3}}-\dfrac{12}{3+\sqrt{3}}+\dfrac{26}{4-\sqrt{3}}\right)\)x \(\left(4-3\sqrt{3}\right)\)
RÚT GỌN BIỂU THỨC SAU:
26) \(A = \left(\dfrac{\sqrt{x}}{\sqrt{x} + 2} - \dfrac{3}{2 - \sqrt{x}} + \dfrac{3\sqrt{x} - 2}{x - 2}\right) : \left(\dfrac{\sqrt{x} + 3}{\sqrt{x} - 2} + \dfrac{2\sqrt{x}}{2\sqrt{x} - x}\right)\)
Sửa đề: \(A=\left(\dfrac{\sqrt{x}}{\sqrt{x}+2}-\dfrac{3}{2-\sqrt{x}}+\dfrac{3\sqrt{x}-2}{x-4}\right):\left(\dfrac{\sqrt{x}+3}{\sqrt{x}-2}+\dfrac{2\sqrt{x}}{2\sqrt{x}-x}\right)\)
ĐKXĐ: x>0; x<>4
\(A=\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)+3\left(\sqrt{x}+2\right)+3\sqrt{x}-2}{x-4}:\dfrac{x+3\sqrt{x}-2\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(=\dfrac{x-2\sqrt{x}+3\sqrt{x}+6+3\sqrt{x}-2}{x-4}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)}{x+\sqrt{x}}\)
\(=\dfrac{x+4\sqrt{x}+4}{\sqrt{x}+2}\cdot\dfrac{1}{\sqrt{x}+1}=\dfrac{x+4\sqrt{x}+4}{x+3\sqrt{x}+2}\)
\(=\dfrac{\sqrt{x}+2}{\sqrt{x}+1}\)
RG: A = \(\dfrac{x\sqrt{x}+26\sqrt{x}-19}{x+2\sqrt{x}-3}\) - \(\dfrac{2\sqrt{x}}{\sqrt{x}-1}\) + \(\dfrac{\sqrt{x}-3}{\sqrt{x}+3}\) ; ĐKXĐ: x ≥ 0
\(A=\dfrac{x\sqrt{x}+26\sqrt{x}-19}{x+2\sqrt{x}-3}-\dfrac{2\sqrt{x}}{\sqrt{x}-1}+\dfrac{\sqrt{x}-3}{\sqrt{x}+3}\)
\(A=\dfrac{x\sqrt{x}+26\sqrt{x}-19}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}-\dfrac{2\sqrt{x}}{\sqrt{x}-1}+\dfrac{\sqrt{x}-3}{\sqrt{x}+3}\)
\(A=\dfrac{x\sqrt{x}+26\sqrt{x}-19}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}-\dfrac{2\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}+\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(A=\dfrac{x\sqrt{x}+26\sqrt{x}-19-2x-6\sqrt{x}+x-3\sqrt{x}-\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(A=\dfrac{x\sqrt{x}-x+16\sqrt{x}-16}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(A=\dfrac{\left(x\sqrt{x}-x\right)+\left(16\sqrt{x}-16\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(A=\dfrac{x\left(\sqrt{x}-1\right)+16\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(A=\dfrac{\left(\sqrt{x}-1\right)\left(x+16\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(A=\dfrac{x+16}{\sqrt{x}+3}\)
Thực hiện các phép tính sau :
a)A=\(\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}\) b)B=\(\left(2-\sqrt{3}\right).\sqrt[3]{26+15\sqrt{3}}\) c)C=\(\sqrt[3]{3+\sqrt{9+\dfrac{125}{27}}}-\sqrt[3]{-3+\sqrt{9+\dfrac{125}{7}}}\)
a) \(\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}\)
=\(\sqrt[3]{16+8\sqrt{5}}+\sqrt[3]{16-8\sqrt{5}}\)
=\(\sqrt[3]{\left(1+\sqrt{5}\right)^3}+\sqrt[3]{\left(1-\sqrt{5}\right)^3}\)
=\(1+\sqrt{5}+1-\sqrt{5}=2\)
b) \(\left(2-\sqrt{3}\right)\sqrt[3]{26+15\sqrt{3}}\)
=\(\left(2-\sqrt{3}\right)\sqrt[3]{\left(2+\sqrt{3}\right)^3}\)
=\(\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)=4-3=1\)
c) xem lại đề
Bạn Thái làm sai rồi
a)do ban đầu cậu nhân 2 cho hai vế nhưng bạn chưa chia lại.mik bổ sung ý tiếp cho bạn là
2A=2=>A=1.
mik lam tiep cau b la
B=\(\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)\)
=4-3
=1.
còn câu c mik pó tay :))
Tính
a.A=\(\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}\)
b.B=\(\sqrt[3]{3+\sqrt{9+\dfrac{125}{7}}}-\sqrt[3]{-3+\sqrt{9+\dfrac{125}{7}}}\)
c.C=\(\sqrt[3]{26+15\sqrt{3}}.\left(2-\sqrt{3}\right)+\sqrt[3]{9+\sqrt{80}}+\sqrt[3]{9-\sqrt{80}}\)
a: \(A^3=2+\sqrt{5}+2-\sqrt{5}+3\cdot A\cdot\sqrt[3]{4-5}\)
\(\Leftrightarrow A^3=4-3A\)
=>A=1
c: \(C=1+\sqrt[3]{9+4\sqrt{5}}+\sqrt[3]{9-4\sqrt{5}}\)
\(=1+3=4\)