Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ga
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 10 2021 lúc 23:20

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

Ta có: \(\dfrac{a-b}{c-d}=\dfrac{bk-b}{dk-d}=\dfrac{b}{d}\)

\(\dfrac{2a-3b}{2c-3d}=\dfrac{2bk-3b}{2dk-3d}=\dfrac{b}{d}\)

Do đó: \(\dfrac{a-b}{c-d}=\dfrac{2a-3b}{2c-3d}\)

Nguyễn Trung Hiếu
Xem chi tiết
Nguyễn Đức Trí
27 tháng 8 2023 lúc 16:03

a) \(\dfrac{a}{b}=\dfrac{c}{d}\left(a;b;c;d\ne0\right)\)

 \(\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}\)

\(\Rightarrow\dfrac{a+b}{b}=\dfrac{c+d}{d}\)

\(\Rightarrow dpcm\)

b) \(\dfrac{a}{b}=\dfrac{c}{d}\)

\(\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)

\(\Rightarrow\dfrac{5a}{5c}=\dfrac{3b}{3d}=\dfrac{5a+3b}{5c+3d}=\dfrac{5a-3b}{5c-3d}\)

\(\Rightarrow\dfrac{5a+3b}{5a-3b}=\dfrac{5c+3d}{5c-3d}\)

\(\Rightarrow dpcm\)

Nguyễn Trung Hiếu
27 tháng 8 2023 lúc 16:04

Thanks

Akai Haruma
27 tháng 8 2023 lúc 18:46

Lời giải:

Đặt $\frac{a}{b}=\frac{c}{d}=k$

$\Rightarrow a=bk; c=dk$. Khi đó:

1.

$\frac{a+b}{b}=\frac{bk+b}{b}=\frac{b(k+1)}{b}=k+1(1)$

$\frac{c+d}{d}=\frac{dk+d}{d}=\frac{d(k+1)}{d}=k+1(2)$
Từ $(1); (2)\Rightarrow \frac{a+b}{b}=\frac{c+d}{d}$

2.

$\frac{5a+3b}{5a-3b}=\frac{5bk+3b}{5bk-3b}=\frac{b(5k+3)}{b(5k-3)}=\frac{5k+3}{5k-3}(3)$

$\frac{5c+3d}{5c-3d}=\frac{5dk+3d}{5dk-3d}=\frac{d(5k+3)}{d(5k-3)}=\frac{5k+3}{5k-3}(4)$

Từ $(3); (4)\Rightarrow \frac{5a+3b}{5a-3b}=\frac{5c+3d}{5c-3d}$ (đpcm)

Nguyễn Thị Nguyệt
Xem chi tiết
Khả Nhi
Xem chi tiết
Aug.21
17 tháng 6 2019 lúc 8:24

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=b.k\\c=d.k\end{cases}}\)

\(\Rightarrow\frac{a}{2a-3b}=\frac{b.k}{2b.k-3b}=\frac{b.k}{\left(2k-3\right)b}=\frac{k}{2k-3}\left(1\right)\)

\(\frac{c}{2c-3d}=\frac{d.k}{2d.k-3a}=\frac{d.k}{\left(2k-3\right)d}=\frac{k}{2k-3}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\frac{a}{2a-3b}=\frac{c}{2c-3d}\)

Lê Thu Trang
Xem chi tiết
Đặng Nguyễn Quỳnh Nga
Xem chi tiết
Lê Nguyên Hạo
21 tháng 7 2016 lúc 18:53

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{2a}{2c}=\frac{3b}{3d}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\frac{2a}{2c}=\frac{3b}{3d}=\frac{2a-3b}{2c-3d}=\frac{2a+3b}{2c+3d}\)(đpcm)

GϹͳ. VΔŋɧ⑧⑤
Xem chi tiết
Nguyễn Duy Khang
8 tháng 2 2021 lúc 8:30

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

\(\dfrac{2a+3b}{2a-3b}=\dfrac{2bk+3b}{2bk-3b}=\dfrac{b\left(2k+3\right)}{b\left(2k-3\right)}=\dfrac{2k+3}{2k-3}\left(1\right)\)

\(\dfrac{2c+3d}{2c-3d}=\dfrac{2dk+3d}{2dk-3d}=\dfrac{d\left(2k+3\right)}{d\left(2k-3\right)}=\dfrac{2k+3}{2k-3}\left(2\right)\)

Từ (1) và (2) suy ra \(\dfrac{2a+3b}{2a-3b}=\dfrac{2c+3d}{2c-3b}\left(=\dfrac{2k+3}{2k-3}\right)\)

 

Aaron Lycan
8 tháng 2 2021 lúc 8:33

Áp dụng tính chất dãy tỉ số băng nhau,ta có:

\(\dfrac{a}{b}=\dfrac{c}{d}=>\dfrac{a}{c}=\dfrac{b}{d}=>\dfrac{2a}{2c}=\dfrac{3b}{3d}=>\dfrac{2a+3b}{2c+3d}=\dfrac{2a-3d}{2c-3d}=>\dfrac{2a+3b}{2a-3b}=\dfrac{2c+3d}{2c-3d}\left(đpcm\right)\)

 

BiBo MoMo
Xem chi tiết
hoy
20 tháng 3 2019 lúc 16:45

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{5a}{5c}=\frac{3b}{3d}=\frac{5a+3b}{5c+3d}=\frac{5a-3b}{5c-3d}\)suy ra đpcm.

MKelvin
Xem chi tiết
Vũ Cao Minh
24 tháng 4 2020 lúc 11:35

\(\frac{a}{b}=\frac{c}{d}\Rightarrow a=bk;c=dk\)

\(\Rightarrow\frac{4a-3b}{a}=\frac{4bk-3b}{bk}=\frac{b\left(4k-3\right)}{bk}=\frac{4k-3}{k}\left(1\right)\)

\(\Rightarrow\frac{4c-3d}{c}=\frac{4dk-3d}{dk}=\frac{d\left(4k-3\right)}{dk}=\frac{4k-3}{k}\left(2\right)\)

Từ \(\left(1\right)\left(2\right)\Rightarrow\frac{4a-3b}{a}=\frac{4c-3d}{c}\left(đpcm\right)\)