Cho tứ giác ABCD, góc A= 100 độ, góc B=120 độ . Các tia phân giác của góc C và góc D cắt nhau tại E. Các tia phân giác của các góc ngoài tại C và D cắt nhau tại F. Tính các góc của tứ giác DECF.
Xét Tứ giác ABCD có: góc A + B + C + D = 360o => 100o + 120o + (C + D) = 360o => góc C + D = 140o
DE; CE lần lượt là p/g của góc D; C => góc D1 = D/ 2 ; C1 = C/ 2 => góc (D1 + C1) = (D + C) /2 = 700
Xét tam giác DEC có: góc D1 + góc E + góc C1 = 180o => góc DEC = 180o - (D1 + C1) = 180o - 70o = 110o
Vì tia Dx là p/g ngoài của góc D; DE là p/g trong của góc D => Dx vuông góc với DE => DF vuông góc với DE => góc EDF = 900
=> góc D2 = 90o - D1
Vì tia Cy là p/g ngoài của góc ACD ; CE là p/g trong của góc ACD => Cy vuông góc với CE => CF vuông góc với CE => góc ECF = 90o
=> góc C2 = 90o - C1
Xét tam giác CDF có: góc C2 + góc CFD + góc D2 = 180o
=> góc CFD + (90o - D1 + 90o - C1) = 180o => góc CFD + 180o - (D1 + C1) = 180o => góc CFD = D1 + C1 = 90o
cho tứ giác ABCD có góc A=120 độ, góc B=150 độ. các tia phân giác của góc C và D cắt nhâu tại E. các đường phân giác của góc ngoài tại các đỉnh C và D cắt nhau tại F. tính góc CED và góc CFD
Cho tứ giác ABCD, có góc A=1000; B=1200. Các tia phân giác của góc C và góc D cắt nhau tại E. Các tia phân giác của các góc ngoài tại C và D cắt nhau tại F. Tính các góc của tứ giác DECF.
cho tứ giác ABCD có góc A =110 độ ; goc B= 100 độ. Các tia phân giác của góc C và D cắt nhau tại E. Các đường phân giác của các góc ngoài tại C và D cắt nhau ở F. Tính góc CED và góc CFD
Ta có: góc A+B+C+D=360 =>C+D=150 độ
Tính góc CED + EDC=1/2C+1/2D=1/2(C+D)=75(do phân giác)
=>E=180-75=105
ta có góc tạo bởi 2 tia phân giác của 2 góc kề có tổng là 90 độ (có cm trong sgk)
nên ECF+EDF=90+80=180 độ
=>CFD= 360-180-105=75
Xong rồi, nhưng bạn lập luận chặt chẽ hơn nhé
cho tứ giác ABCD có góc A =110 độ ; goc B= 100 độ. Các tia phân giác của góc C và D cắt nhau tại E. Các đường phân giác của các góc ngoài tại C và D cắt nhau ở F. Tính góc CED và góc CFD
Tứ giác ABCD có A^+B^+C^+D^=360độ
D^+C^=150độ
\(\frac{1}{2}\)D^+\(\frac{1}{2}\)C^=\(\frac{150}{2}\)độ
\(\Rightarrow\)D2^+C2^=\(\frac{150}{2}\)=75độ
Tam giác DEC có D2^+C2^+CED^=180độ
CED^=105độ
Cho tứ giác ABCD biết A ^ : B ^ : C ^ : D ^ = 4:3:2:1.
a) Tính các góc của tứ giác ABCD.
b) Các tia phân giác của C ^ v à D ^ cắt nhau tại E. Các đường phân giác của góc ngoài tại các đỉnh C và D cắt nhau tại F. Tính C E D ^ v à C F D ^ .
a) Sử dụng tính chất dãy tỉ số bằng nhau. A ^ = 144 0 , B ^ = 108 0 , C ^ = 72 0 , D ^ = 36 0
b) Sử dụng tổng ba góc trong tam giác tính được C E D ^ = 126 0 .
Chú ý hai phân giác trong và ngoài tại mỗi góc của một tam giác thì vuông góc nhau, cùng với tổng bốn góc trong tứ giác, ta tính được C F D ^ = 54 0
Cho tứ giác abcd có góc A=80 độ, góc D=100 độ
a)vẽ tia phân giác của góc A và góc D cắt nhau tại E. tính góc AED.
b)vẽ tia phân giác của góc B và góc C cắt nhau tại F. tính góc BFC.
a: Xét ΔAED có
\(\widehat{AED}+\widehat{EAD}+\widehat{EDA}=180^0\)
hay \(\widehat{AED}=90^0\)
Cho tứ giác ABCD biết gócB+ gócC=200 độ,B+D=180,C+D=120
a) Tính các góc trong tứ giác ABCD
b) Các tia phân giác của A và B cắt nhau tại I CMR:C+D=2AIB
Cho tứ giác ABCD có góc B+góc C=200 độ, góc B+góc D=180 độ, góc C+góc D=120 độ a) Tính các góc của tứ giác b) Tia phân giác của góc A và góc B cắt nhau tại I. cm: góc AIB = góc C+góc D phần 2 Mong mn giúp mik! Xin cảm ơn :33