Tìm GTNN của:
\(x^2+y^2-x+6y+15\)
Tìm GTNN của { x }^{ 2 } + { y }^{ 2 } -4x+6y+15
Có biểu tượng $\sum$ hỗ trợ viết công thức toán. Lần sau bạn lưu ý sử dụng, không viết công thức kiểu như trên bài.
Lời giải:
$x^2+y^2-4x+6y+15=(x^2-4x+4)+(y^2+6y+9)+2$
$=(x-2)^2+(y+3)^2+2$
$\geq 0+0+2=2$
Vậy gtnn của biểu thức là $2$. Giá trị này đạt tại $x-2=y+3=0$
$\Leftrightarrow x=2; y=-3$
Ta có: \(x^2+y^2-4x+6y+15\)
\(=x^2-4x+4+y^2+6y+9+2\)
\(=\left(x-2\right)^2+\left(y+3\right)^2+2\ge2\forall x,y\)
Dấu '=' xảy ra khi x=2 và y=-3
Tìm GTNN của bt sau : a) M = x^2 + 4x + 9 b) N = x^2 - 20x + 101 2) Tìm GTLN của bt sau : a) C = -y^2 + 6y - 15 B = -x^2 + 9x -12
Bài 1:
a. $M=x^2+4x+9=(x^2+4x+4)+5=(x+2)^2+5\geq 0+5=5$ do $(x+2)^2\geq 0$ với mọi $x$
Vậy $M_{\min}=5$. Giá trị này đạt tại $x+2=0\Leftrightarrow x=-2$
b.
$N=x^2-20x+101=(x^2-20x+10^2)+1=(x-10)^2+1\geq 1$ do $(x-10)^2\geq 0$ với mọi $x$
Vậy $N_{\min}=1$. Giá trị này đạt tại $x-10=0\Leftrightarrow x=10$
Bài 2:
a.
$C=-y^2+6y-15$
$-C=y^2-6y+15=(y^2-6y+9)+6=(y-3)^2+6\geq 6$ (do $(y-3)^2\geq 0$ với mọi $y$)
$\Rightarrow C\leq -6$
Vậy $C_{\max}=-6$. Giá trị này đạt tại $y-3=0\Leftrightarrow y=3$
b.
$-B=x^2-9x+12=(x^2-9x+4,5^2)-8,25=(x-4,5)^2-8,25\geq -8,25$ do $(x-4,5)^2\geq 0$ với mọi $x$
$\Rightarrow B\leq 8,25$
Vậy $B_{\max}=8,25$. Giá trị này đạt tại $x-4,5=0\Leftrightarrow x=4,5$
1) Tìm GTNN của bt sau : a) M = x^2 + 4x + 9 b) N = x^2 - 20x + 101 2) Tìm GTLN của bt sau : a) C = -y^2 + 6y - 15 B = -x^2 + 9x -12
1)
a) \(M=\)\(x^2\)\(+\)\(4x\)\(+\)\(9\)
\(=\)\(x^2\)\(+\)\(2x\)\(.\)\(2\)\(+\)\(4\)\(+\)\(5\)
\(=\left(x+2\right)^2\)\(+\)\(5\)\(>;=\)\(5\)
Dấu bằng xảy ra khi x + 2 = 0
x = -2
Vậy GTNN của M bằng 5 khi x = -2
b) \(N=\)\(x^2\)\(-\)\(20x\)\(+\)\(101\)
\(=\)\(x^2\)\(-\)\(2x\)\(.\)\(10\)\(+\)\(100\)\(+\)\(1\)
\(=\)\(\left(x-10\right)^2\)\(+\)\(1\)\(>;=\)\(1\)
Dấu bằng xảy ra khi x - 10 = 0
x = 10
Vậy GTNN của N bằng 1 khi x = 10
2)
a) \(C=\)\(-y^2\)\(+\)\(6y\)\(-\)\(15\)
\(=\)\(-y^2\)\(+\)\(2y\)\(.\)\(3\)\(-\)\(9\)\(-\)\(6\)
\(=\)\(-\left(y-3\right)^2\)\(-\)\(6\)\(< ;=\)\(6\)
Dấu bằng xảy ra khi y - 3 = 0
y = 3
Vậy GTLN của C bằng -6 khi y = 3
b) \(B=\)\(-x^2\)\(+\)\(9x\)\(-\)\(12\)
\(=\)\(-x^2\)\(+\)\(2x\)\(.\)\(\frac{9}{2}\)\(-\)\(\frac{81}{4}\)\(+\)\(\frac{81}{4}\)\(-\)\(12\)
\(=\)\(-\left(x-\frac{9}{2}\right)^2\)\(+\)\(\frac{33}{4}\)\(< ;=\)\(\frac{33}{4}\)
Dấu bằng xảy ra khi \(x-\frac{9}{2}=0\)
\(x=\frac{9}{2}\)
Vậy GTLN của B bằng \(\frac{33}{4}\)khi x = \(\frac{9}{2}\)
a) M = x2 + 4x + 9 = x2 + 4x + 4 + 5 = (x + 2)2 + 5
Vì : \(\left(x+2\right)^2\ge0\forall x\in R\)
Nên M = (x + 2)2 + 5 \(\ge5\forall x\in R\)
Vậy Mmin = 5 khi x = -2
b) N = x2 - 20x + 101 = x2 - 20x + 100 + 1 = (x - 10)2 + 1
Vì \(\left(x-10\right)^2\ge0\forall x\in R\)
Nên : N = (x - 10)2 + 1 \(\ge1\forall x\in R\)
Vậy Nmin = 1 khi x = 10
Bài 2 :
a) C = -y2 + 6y - 15 = -(y2 - 6y + 15) = -(y2 - 6y + 9 + 6) = -(y2 - 6y + 9) - 6 = -(y - 3)2 - 6
Vì \(-\left(y-3\right)^2\le0\forall x\in R\)
Nên : C = -(y - 3)2 - 6 \(\le-6\forall x\in R\)
Vậy Cmin = -6 khi y = 3
b) B = -x2 + 9x - 12 = -(x2 - 9x + 12) = -(x2 - 9x + \(\frac{81}{4}-\frac{33}{4}\)) = \(-\left(x-\frac{9}{2}\right)^2+\frac{33}{4}\)
Vì \(-\left(x-\frac{9}{2}\right)^2\le0\forall x\in R\)
Nên : B = \(-\left(x-\frac{9}{2}\right)^2+\frac{33}{4}\) \(\le\frac{33}{4}\forall x\in R\)
Vậy Bmin = \(\frac{33}{4}\) khi \(x=\frac{9}{2}\)
Tìm GTNN của :
A = x2 - 4x + 15
B = x.(x - 3x)
C = x2 + y2 +4x + 6y +20
a)\(A=x^2-4x+15\)
\(A=x^2-2x-2x+4+9\)
\(A=x\left(x-2\right)-2\left(x-2\right)+9\)
\(A=\left(x-2\right)^2+9\ge9.Với\forall x\in Q\)
Dấu "=" xảy ra khi \(x-2=0\Leftrightarrow x=2\)
Vậy Min A = 9 <=> x = 2
b)\(B=x\left(x-3x\right)=x.\left(-2x\right)=-2x^2\ge0\)
Dấu "=" xảy ra khi \(x=0\)
Vậy Min B = 0 <=> x = 0
c)\(C=x^2+y^2+4x+6y+20\)
\(C=x^2+4x+4+y^2+6y+9+7\)
\(C=\left(x+2\right)^2+\left(y+3\right)^2+7\ge7\)
Dấu "=" xảy ra khi : x = -2 ; y = -3
Vậy Min C = 7 <=> x = -2 ; y = -3
\(A=x^2-4x+15=x^2-4x+4+11=\left(x-2\right)^2+11\)
Vì \(\left(x-2\right)^2\ge0\left(\forall x\right)\Rightarrow\left(x-2\right)^2+11\ge11\)
Dấu "=" xảy ra <=> (x-2)2 = 0 <=> x-2 = 0 <=> x=2
Vậy GTNN của biểu thức = 11 khi và chỉ khi x = 2
\(C=x^2+y^2+4x+6y+20\)
\(=x^2+4x+4+y^2+6y+9+7\)
\(=\left(x+2\right)^2+\left(x+3\right)^2+7\)
Vì \(\left(x+2\right)^2\ge0\left(\forall x\right);\left(y+3\right)^2\ge0\left(\forall y\right)\)
\(\Rightarrow\left(x+2\right)^2+\left(y+3\right)^2+7\ge7\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left(x+2\right)^2=0\\\left(y+3\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x+2=0\\y+3=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-2\\y=-3\end{cases}}}\)
Vậy GTNN của biểu thức bằng 7 khi và chỉ khi x = -2 và y = -3
Mình làm thiếu câu b
\(B=x.\left(x-3x\right)=x.\left(-2x\right)=-2x^2\)
Vì \(x^2\ge0\left(\forall x\right)\Rightarrow-2x^2\ge0\)
Dấu "=" xảy ra <=> x2 = 0<=> x = 0
Vậy GTNN của biểu thức bằng 0 khi và chỉ khi x = 0
Tìm GTNN của biểu thức :
a) A = 5x^2 - 4x + 1
b) B = x^2 - 4x + y^2 - 6y +15 và 3/4
a) \(A=5x^2-4x+1\)
\(=5\left(x^2-\frac{4}{5}x+\frac{1}{5}\right)\)
\(=5\left(x^2-\frac{4}{5}x+\frac{4}{25}-\frac{2}{25}\right)\)
\(=5\left[\left(x-\frac{2}{5}\right)^2-\frac{2}{25}\right]\)
\(=5\left[\left(x-\frac{2}{5}\right)^2\right]-2\ge-2\)
Vậy \(A_{min}=-2\Leftrightarrow x-\frac{2}{5}=0\Leftrightarrow x=\frac{2}{5}\)
Sửa)):Dòng 3
\(=5\left(x^2-\frac{4}{5}x+\frac{4}{25}+\frac{1}{25}\right)\)
\(=5\left[\left(x-\frac{2}{5}\right)^2+\frac{1}{25}\right]\)
\(=5\left[\left(x-\frac{2}{5}\right)^2\right]+\frac{1}{5}\ge\frac{1}{5}\)
(Dấu "="\(\Leftrightarrow x-\frac{2}{5}=0\Leftrightarrow x=\frac{2}{5}\)
Tìm GTNN của
M=x^2+y^2-x+6y+10
\(M=x^2+y^2-x+6y+10\)
\(M=x^2-2.\frac{1}{2}x+\frac{1}{4}+y^2+6y+9+1-\frac{1}{4}\)
\(M=\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+1-\frac{1}{4}\)
\(M_{min}=1-\frac{1}{4}=\frac{3}{4}\Leftrightarrow x=\frac{1}{2},y=-3\)
P/s tham khảo nha
\(x^2+y^2-x+6y+10\)
=\(x^2-2\cdot\frac{1}{2}\cdot x+\frac{1}{4}+y^2+6y+9+\frac{3}{4}\)
=\(\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{3}{4}\)
Có \(\left(x-\frac{1}{2}\right)^2\ge0\)
\(\left(y+3\right)^2\ge0\)
\(\Rightarrow\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2\ge0\)
\(\Rightarrow\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x-\frac{1}{2}=0\Rightarrow x=\frac{1}{2}\)
\(y+3=0\Rightarrow y=-3\)
Vậy MinM = \(\frac{3}{4}\)\(\Leftrightarrow\)\(x=\frac{1}{2}\)và \(y=-3\)
\(\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{3}{4}\)
Cho \(x,y\inℝ;x\ne y\)
Tìm GTNN của \(P=\frac{x^2-6y+6y^2}{x^2-2xy+y^2}\)
Sửa đề
\(P=\frac{x^2-6xy+6y^2}{x^2-2xy+y^2}\)
\(\Leftrightarrow P+3=\frac{x^2-6xy+6y^2}{x^2-2xy+y^2}+3=\frac{\left(3y-2x\right)^2}{\left(x-y\right)^2}\ge0\)
\(\Leftrightarrow P\ge-3\)
Tìm GTNN của:
a,\(x^2-4x+y^2-2y+10\)
b,\(x^2+y^2-x+6y+15\)
c,\(x^2+2y^2-6x-8y+2xy+5\)
a)\(x^2-4x+y^2-2y+10=\left(x^2-4x+4\right)+\left(y^2-2y+1\right)+5\)
\(=\left(x-2\right)^2+\left(y-1\right)^2+5\ge5\)
Dấu "=" xảy ra khi x=2;y=1
b) tương tự câu a
c)\(x^2+2y^2-6x-8y+2xy+5=x^2+2y^2+2x\left(y-3\right)-8y+5\)
\(=x^2+2x\left(y-3\right)+\left(y^2-6x+9\right)+\left(y^2-2x+1\right)-5\)
\(=x^2+2x\left(y-3\right)+\left(y-3\right)^2+\left(y-1\right)^2-5\)
\(=\left(x+y-3\right)^2+\left(y-1\right)^2-5\ge-5\)
Dấu "=" xảy ra khi x=2;y=1
Tìm GTNN của biểu thức:
M=x^ 2+y^ 2-2x+6y+28
\(M=x^2+y^2-2x+6y+28=\left(x^2-2x+1\right)+\left(y^2+6y+9\right)+18=\left(x-1\right)^2+\left(y+3\right)^2+18\ge18\)
\(minM=18\Leftrightarrow\)\(\left\{{}\begin{matrix}x=1\\y=-3\end{matrix}\right.\)