phân tích đa thức thành nhân tử
a ) 6x2- 3xy
b) x2- y2 - 6x +
c ) x2- 5x + 6
Câu 1: Phân tích đa thức thành nhân tử
a. 6x² - 3xy
b. x2 -y2 - 6x + 9
c. x2 + 5x - 6
a: \(6x^2-3xy\)
\(=3x\cdot2x-3x\cdot y\)
=3x(2x-y)
b: \(x^2-y^2-6x+9\)
\(=\left(x^2-6x+9\right)-y^2\)
\(=\left(x-3\right)^2-y^2=\left(x-3-y\right)\left(x-3+y\right)\)
c: \(x^2+5x-6\)
=\(x^2+6x-x-6\)
=x(x+6)-(x+6)
=(x+6)(x-1)
Câu 1: Phân tích đa thức thành nhân tử
a. 6x² - 3xy
b. x2 -y2 - 6x + 9
c. x2 + 5x - 6
a: \(6x^2-3xy\)
\(=3x\cdot2x-3x\cdot y\)
\(=3x\left(2x-y\right)\)
b: \(x^2-y^2-6x+9\)
\(=\left(x^2-6x+9\right)-y^2\)
\(=\left(x-3\right)^2-y^2\)
\(=\left(x-3-y\right)\left(x-3+y\right)\)
c: \(x^2+5x-6\)
\(=x^2+6x-x-6\)
\(=x\left(x+6\right)-\left(x+6\right)\)
\(=\left(x+6\right)\left(x-1\right)\)
Nếu tổng các hệ số trong đa thức bằng 0 thì đây thức có một nghiệm là 1, đa thức trên sẽ có một nghiệm là 1 nên đa thức có thể phân tích thành (x - 1) x a
Nếu tổng các hệ số bậc chẵn bằng tổng hệ số bậc lẻ thì đa thức có một nghiệm là -1
Ví dụ đa thức -x² + 5x + 6 có tổng hệ số bằng chẵn bằng -1 + 6 = 5 bằng hệ số bậc lẻ, đa thức trên sẽ có một nghiệm là -1 nên đa thức có thể phân tích thành (a + 1) x a
a. 6x² - 3xy = 3x x 2x - y
b. x^2 - y^2 - 6x + 9 = x² - 6x + 9 - y²( x - 3)^2 - y ^2 = x - 3 - y x (x - 3) + y
c. x² + 5x - 6 = x² - x + 6x - 6 = (x - 1) x (x + 6)
Phân tích đa thức thành nhân tử:
a) x 2 - 5x + 6; b) 3 x 2 + 9x - 30;
c) 3 x 2 - 5x - 2; d) x 2 -7xy + 10 y 2 ;
e) x 3 -7x-6; g) x 4 + 2 x 3 + 6x - 9;
h) x 2 -2x - y 2 +4y - 3.
a) (x - 2)(x - 3). b) 3(x - 2)(x + 5).
c) (x - 2)(3x + 1). d) (x-2y)(x - 5y).
e) (x + l)(x + 2)(x - 3). g) (x-1)(x + 3)( x 2 + 3).
h) (x + y - 3)(x - y + 1).
Phân tích các đa thức sau thành nhân tử:
1) x3 - 7x + 6
2) x3 - 9x2 + 6x + 16
3) x3 - 6x2 - x + 30
4) 2x3 - x2 + 5x + 3
5) 27x3 - 27x2 + 18x - 4
6) x2 + 2xy + y2 - x - y - 12
7) (x + 2)(x +3)(x + 4)(x + 5) - 24
8) 4x4 - 32x2 + 1
9) 3(x4 + x2 + 1) - (x2 + x + 1)2
10) 64x4 + y4
11) a6 + a4 + a2b2 + b4 - b6
12) x3 + 3xy + y3 - 1
13) 4x4 + 4x3 + 5x2 + 2x + 1
14) x8 + x + 1
15) x8 + 3x4 + 4
16) 3x2 + 22xy + 11x + 37y + 7y2 +10
17) x4 - 8x + 63
Chia nhỏ ra cậu ơi :v
Cậu đặt câu hỏi free nên đặt nhỏ ra thì mới có người làm nha để như này dày cộp không ai dám làm đou =(((
.Phân tích các đa thức sau thành nhân tử:
a) 5x2y- 10xy2
b) x2 + 2xy + y2 - 5x - 5y
c) x2 – 6x + 8
d)5x2 – 10xy + 5y2 – 20z2
\(a,5x^2y-10xy^2=5xy\left(x-2y\right)\\ b,x^2+2xy+y^2-5x-5y=\left(x+y\right)^2-5\left(x+y\right)=\left(x+y\right)\left(x+y-5\right)\\ c,x^2-6x+8=\left(x^2-2x\right)-\left(4x-8\right)=x\left(x-2\right)-4\left(x-2\right)=\left(x-2\right)\left(x-4\right)\\ d,5x^2-10xy+5y^2-20z^2=5\left(x^2-2xy+y^2-4z^2\right)=5\left[\left(x-y\right)^2-\left(2z\right)^2\right]=5\left(x-y-2z\right)\left(x-y+2z\right)\)
Câu 1: Phân tích đa thức thành nhân tử
a. 6x² - 3xy
b. x2 -y2 - 6x + 9
c. x2 + 5x - 6
Câu 2 thực hiện phép tính
a. x + 2² - x - 3 (x + 1)
b. x³ - 2x² + 5x - 10 : ( x - 2)
Câu 3 Cho biểu thức A = (x - 5) / (x - 4) và B = (x + 5)/ 2x - (x - 6) / (5 - x) - (2x² - 2x - 50) / (2x² - 10x) (điều kiện x khác 0, x khác 4, x khác 5
a. Tính giá trị của A khi x² - 3x = 0
b. Rút gọn B
c. Tìm giá trị nguyên của x để A : B có giá trị nguyên
Câu 4: Cho tam giác ABC cân tại A đường cao AD, O là trung điểm của AC, điểm E đối xứng với điểm D qua cạnh OA.
a. Chứng minh tứ giác ADCE là hình chữ nhật
b. Gọi I là trung điểm của AD, chứng tỏ I là trung điểm của BE
c. cho AB = 10 cm BC = 12 cm. Tính diện tích tam giác OAB
cíu tớ với
Phân tích các đa thức sau thành nhân tử:
a) x 2 + 6x + 8; b) 2 x 2 + 14x +12;
c) 9 x 2 + 24x +15; d) 6 x 2 -xy-7 y 2 .
a) (x + 2)(x + 4). b) 2(x + 6)(x + l).
c) 3(3x + 5)(x + l). d) (6x -7y)(x + y).
Phân tích các đa thức sau thành nhân tử:
a) x 2 +2x-8; b) x 2 +5x + 6;
c) 4 x 2 -12x + 8; d) 3 x 2 +8xy + 5 y 2 .
Phân tích các đa thức sau thành nhân tử:
a) 6x3y-9x2y2+3xy
b) x2-3x+xy-3y
c) x2-y2-4x+4
b) x2-3x+xy-3y
=\(\left(x^2+xy\right)-\left(3x+3y\right)\)
=\(x\left(x+y\right)-3\left(x+y\right)\)
=\(\left(x-3\right)\left(x+y\right)\)
c) x2-y2-4x+4
=(\(x^2-4x+4\))\(-y^2\)
=\(\left(x-2\right)^2\) \(-y^2\)
=(\(x-y-2\)) \(\left(x+y-2\right)\)
a)6x3y-9x2y2+3xy
=\(3xy\left(2x^2-3xy+1\right)\)