Phân tích đa thức thành nhân tử
1) \(\left(x^2+1\right)^2-4x^2\).
2) \(x^2-y^2+2yz-z^2\)
Giúp Mk nha Mk tk
Rút gọn phân thức
a)\(\frac{4x^2+12x+9}{2x^2-x-6}\)
b)\(\frac{3\left|x-4\right|}{3x^2-3x-36^2}\)
c)\(\frac{2xy-x^2+z^2-y^2}{-x^2+y^2-z^2+2xz}\) .
Giúp mk nha , Mk tk cho 3 nk luôn . Cần lắm những tấm lòng nhân ái. Giúp nha....
a)= \(\frac{\left(2x+3\right)^2}{2x^2+3x-4x-6}\)
=\(\frac{\left(2x+3\right)^2}{x\left(2x+3\right)-2\left(2x+3\right)}\)
= \(\frac{\left(2x+3\right)^2}{\left(x-2\right)\left(2x+3\right)}\)
=\(\frac{2x+3}{x-2}\)
b) = \(\frac{3\left|x-4\right|}{3x^2-3x-1296}\)
= \(\frac{3\left|x-4\right|}{3\left(x^2-x-432\right)}\)
=\(\frac{\left|x-4\right|}{x^2-x-432}\)
Phân tích đa thức gthành nhân tử :
1,\(\left(x+y\right)\left(x^2-y^2\right)+\left(y+z\right)\left(y^2-z^2\right)+\left(z+x\right)\)\(\left(z^2-x^2\right)\)( cái này nếu được thì dùng phương pháp xét giá trị riêng nha giúp mình nha . )
\(x^3\left(y-z\right)+y^3\left(z-x\right)+z^3\left(x-y\right)\)
Mn giúp mik nha! Ai làm đúng hết mình tk cho..
Phân tích đa thức sau thành nhân tử :
a, X^2-Y^2- Z^2-2yz
b, 4x^2(x-6)+9y^2(6-x)
c, 6xy+5x-5y-3x^2-3y^2
Giai giúp tui nha. ai làm đúng vô tin nhắn nhận quà nhé ^^
a) x2 - y2 - z2 - 2yz
=x2 - (y2 + 2yz + z2)
=x2 - (y + z)2
=(x - y - z)(x + y + z)
b)4x2(x - 6) + 9y2(6 - x)
=4x2(x - 6) - 9y2(x - 6)
=(x - 6)(4x2 - 9y2)
=(x - 6)(2x - 3y)(2x + 3y)
c)6xy + 5x - 5y - 3x2 - 3y2
=(-3x2 + 6xy - 3y2) + (5x - 5y)
= -3(x2 - 2xy +y2) + 5(x - y)
= -3(x - y)2 + 5(x - y)
=(x - y)(-3x + 3y + 5)
1.Tính \(\dfrac{x}{x+2}-\dfrac{x}{x-2}\)
2.Phân tích đa thức thành nhân tử
1)\(\left(x^2y^2-8\right)-1\)
2)\(x^3y-2x^2y+xy-xy^3\)
3)\(x^3-2x^2y+xy^2\)
4)\(x^2+2x-y^2+1\)
5)\(x^2+2x-4y^2+1\)
6)\(x^2-6x-y^2+9\)
bài 1: ĐKXĐ: \(x\notin\left\{2;-2\right\}\)
\(\dfrac{x}{x+2}-\dfrac{x}{x-2}\)
\(=\dfrac{x\left(x-2\right)-x\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{x^2-2x-x^2-2x}{\left(x-2\right)\left(x+2\right)}=-\dfrac{4x}{x^2-4}\)
Bài 2:
1: \(x^2y^2-8-1\)
\(=x^2y^2-9\)
\(=\left(xy-3\right)\left(xy+3\right)\)
2: \(x^3y-2x^2y+xy-xy^3\)
\(=xy\cdot x^2-xy\cdot2x+xy\cdot1-xy\cdot y^2\)
\(=xy\left(x^2-2x+1-y^2\right)\)
\(=xy\left[\left(x-1\right)^2-y^2\right]\)
\(=xy\left(x-1-y\right)\left(x-1+y\right)\)
3: \(x^3-2x^2y+xy^2\)
\(=x\cdot x^2-x\cdot2xy+x\cdot y^2\)
\(=x\left(x^2-2xy+y^2\right)=x\left(x-y\right)^2\)
4: \(x^2+2x-y^2+1\)
\(=\left(x^2+2x+1\right)-y^2\)
\(=\left(x+1\right)^2-y^2\)
\(=\left(x+1+y\right)\left(x+1-y\right)\)
5: \(x^2+2x-4y^2+1\)
\(=\left(x^2+2x+1\right)-4y^2\)
\(=\left(x+1\right)^2-4y^2\)
\(=\left(x+1-2y\right)\left(x+1+2y\right)\)
6: \(x^2-6x-y^2+9\)
\(=\left(x^2-6x+9\right)-y^2\)
\(=\left(x-3\right)^2-y^2=\left(x-3-y\right)\left(x-3+y\right)\)
Phân tích đa thức thành nhân tử
a,4x2+4x-9y2+1
b,x2-y2+2yz-z2
Phân tích đa thức thành nhân tử:
a)\(x^5+x^4-x^3+x^2-x+\)
b)\(x^4+y^4+\left(x+y\right)^4\)
c)\(2\left(x^2+x+1\right)^2-\left(2x+1\right)^2-\left(x^2+2x\right)^2\)
Làm đc câu nào thì giúp mk câu đó nha
a, =x4(x+2)-x3(x+2)+x2(x+2)-x(x+2)+(x+2)
=(x+2)(x4-x3+x2-x+1)
Phân tích đa thức thành nhân tử:
\(\left(x-1\right)\left(x-2\right)\left(x-4\right)\left(x-4\right)-4x^2\)
làm giúp minh nha^^
PHÂN TÍCH ĐA THỨC THÀNH NHÂN TỬ
\(4x\left(x+y\right)\left(x+y+z\right)\left(x+z\right)+y^2z^2\)
4x(x+y)(x+y+z)(x+z)+y2z2=4(x2+xy+xz)(x2+xy+xz+yz)+y2z2=4(x2+xy+xz)2+4yz(x2+xy+xz)+y2z2=(2(x2+xy+xz)+yz)2=(2x2+2xy+2xz+yz)
Phân tích đa thức thành nhân tử (mn giải chi tiết 1 xíu cho mk nhé)
\(\left(x^2+x+1\right)\left(x^2+x+2\right)-12\)
Đặt \(x^2+x+1=t\)
\(\left(x^2+x+1\right)\left(x^2+x+2\right)-12=t\left(t+1\right)-12=t^2+t-12=\left(t^2+t+\dfrac{1}{4}\right)-\dfrac{49}{4}=\left(t+\dfrac{1}{2}\right)^2-\left(\dfrac{7}{2}\right)^2=\left(t+\dfrac{1}{2}-\dfrac{7}{2}\right)\left(t+\dfrac{1}{2}+\dfrac{7}{2}\right)=\left(t-3\right)\left(t+4\right)=\left(x^2+x-2\right)\left(x^2+x+5\right)\)
\(\left(x^2+x+1\right)\left(x^2+x+2\right)-12\)
= \(\left(x^2+x+1\right)\left[\left(x^2+x+1\right)+1\right]-12\)
= \(\left(x^2+x+1\right)^2\left(x^2+x+1\right)-12\)
= \(\left(x^2+x+1\right)\left(x^2+x+1\right)-3\left(x^2+x+1\right)+4\left(x^2+x+1\right)-4.3\)
= \(\left(x^2+x+1\right)\left(x^2+x-2\right)+4\left(x^2+x-2\right)\)
= \(\left(x^2+x+5\right)\left(x^2+x-2\right)\)