Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Fuya~Ara
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 7 2023 lúc 12:12

 

loading...

Trinh Nguyen
Xem chi tiết
nam vodinh
Xem chi tiết
Nguyễn Lê Phước Thịnh
20 tháng 9 2021 lúc 21:12

a: Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)

hay AH=7,2(cm)

Vycute
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 6 2023 lúc 21:01

Xét ΔHAB vuông tại H có HM là đường cao

nên BH^2=BM*BA; AH^2=AM*AB

=>BM=BH^2/BA; MA=AH^2/AB

BM/MA=BH^2/BA:AH^2/AB

\(=\dfrac{BH^2}{AH^2}=\dfrac{BH^2}{BH\cdot HC}=\dfrac{BH}{HC}\)

\(=\dfrac{AB^2}{BC}:\dfrac{AC^2}{BC}=\dfrac{AB^2}{AC^2}\)

ngọc trần
Xem chi tiết
LOVE NHI
12 tháng 7 2017 lúc 20:24

ai lm đc bài này ko

Chứng minh số sau chia hết cho 6

b,a+17b

c,a-13b 

ok nhé bn nào bt lm cmt nhé

nam vodinh
Xem chi tiết
trần thiên ân
Xem chi tiết
Nguyễn Ngọc Anh Minh
4 tháng 7 2023 lúc 16:32

A B C H M N

a/

Xét tg vuông ABH

\(AH^2=AM.AB\) (trong tg vuông bình phương 1 cạnh góc vuông bằng tích giữa hình chiếu cạnh góc vuông đó trên cạnh huyền với cạnh huyền)

Xét tg vuông ACH có

\(AH^2=AN.AC\) (lý do như trên)

\(\Rightarrow AM.AB=AN.AC\)

b/

\(AN\perp AB;MH\perp AB\) => AN//MH

\(AM\perp AC;NH\perp AC\) => AM//NH

=> AMHN là hình bình hành (Tứ giác có các cặp cạnh đối // với nhau từng đôi một)

Mặt khác \(\widehat{A}=90^o\)

=> AMHN là HCN => AM=NH; AN=MH (cạnh đối HCN)

Xét tg vuông ABH và tg vuông ACH có

\(\widehat{BAH}=\widehat{ACB}\) (cùng phụ với \(\widehat{ABC}\) )

=> tg ABH đồng dạng với tg ACH

\(\Rightarrow\left(\dfrac{AB}{AC}\right)^2=\dfrac{S_{ABH}}{S_{ACH}}\) (hai tg đồng dạng, tỷ số 2 diện tích bằng bình phương tỷ số đồng dạng)

\(\Rightarrow\left(\dfrac{AB}{AC}\right)^2=\dfrac{\dfrac{1}{2}.AB.MH}{\dfrac{1}{2}.AC.NH}\Rightarrow\dfrac{AB}{AC}=\dfrac{MH}{NH}\) lập phương 2 vế

\(\dfrac{AB^3}{AC^3}=\dfrac{MH^2.MH}{NH^2.NH}\) (1)

Xét tg vuông ABH

\(MH^2=BM.AM\) (trong tg vuông bình phương đường cao hạ tử đỉnh góc vuông bằng tích giữa hai hình chiếu của 2 cạnh góc vuông trên cạnh huyền) (2)

Xét tg vuông ACH, c/m tương tự

\(NH^2=CN.AN\) (3)

Thay (2) và (3) vào (1)

(1) \(\Leftrightarrow\dfrac{AB^3}{AC^3}=\dfrac{BM.AM.MH}{CN.AN.NH}\)

Mà AM = NH; AN = MH (cmt)

\(\Rightarrow\dfrac{AB^3}{AC^3}=\dfrac{BM}{CN}\)

MixiGaming
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 12 2023 lúc 21:17

loading...

Nguyễn Quỳnh Mai
Xem chi tiết
Lê Song Phương
8 tháng 7 2023 lúc 7:48

 Ta thấy 1 cặp tam giác đồng dạng quen thuộc là \(\Delta HAB~\Delta HCA\), từ đó suy ra \(\dfrac{S_{HAB}}{S_{HCA}}=\left(\dfrac{AB}{AC}\right)^2\). Mà ta lại có \(\dfrac{S_{HAB}}{S_{HCA}}=\dfrac{HB}{HC}\) (2 tam giác có chung đường cao hạ từ A) nên suy ra đpcm.