Cho tam giác ABC vuông tại A . M là trung điểm của AC . E và F lần lượt là hình chiếu của điểm A và C đến đường thẳng BM .
a) So sánh AE + CF và AC .
b) C/m AB < \(\frac{1}{2}\)( BE + BF ).
Cho tam giác ABC vuông tại A . M là trung điểm của AC.E và F lần lượt là hình chiếu của điểm A và C đến đường thẳng BM
a)SO sánh AE+CF và AC
b) c/m AB<\(\frac{1}{2}\left(BE+BF\right)\)
Cho tam giác ABC vuông tại A, M là trung điểm của AC. Gọi D, E lần lượt là hình chiếu của A và C xuống đường thẳng BM. So sánh BD + BE và AB
A. B D + B E > 2 A B
B. B D + B E < 2 A B
C. B D + B E = 2 A B
D. B D + B E < A B
Cho tam giác ABC vuông tại A . M LÀ TRUNG ĐIỂM của AC . Gọi D và E lần lượt là hình chiếu của A và C xuống đường thẳng BM . So sánh BD+BE và AB
Cho tam giác ABC vuông tại A, M là trung điểm của AC. Gọi E và F là chân các đường vuông góc lần lượt kẻ từ A và C đến đường thẳng BM.
a )Chứng minh ME = MF?
b)So sánh AB và BE + BF/ 2
1 ) Cho tam giác ABC , D nằm giữa A và C sao cho BD không vuông góc với AC . Gọi E và F là chân các đường vuông góc vẽ từ A và C đến đường thẳng BD . So sánh AD với tổng AE + CF
2 ) Cho tam giác ABC vuông tại A , M là trung điểm của AC . Gọi E và F là chân các đường vuông góc vẽ từ A và C đến đường thẳng BM . Chứng minh rằng : AB < BE + BF / 2
Cho tam giác ABC. M là một điểm bất kì thuộc đoạn thẳng AC. Gọi E, F là chân đường vuông góc hạ từ A, C tới đường thẳng BM.
a) So sánh AE+CF với AC. Xác định vị trí của M để AE+CF có tổng độ dài lớn nhất.
b) So sánh AE+CF với nửa chu vi tam giác ABC.
c) Khi tam giác ABC vuông tại A và M là trung điểm của AC, chứng minh rằng \(AB< \frac{BE+CF}{2}< BC\).
cho tam giác ABC vuông tại A . M là trung điểm của AC . Gọi D và E lần lươtk là hình chiếu của A và C xuống đường thẳng BM . So sánh BE + BD với AB
Cho tam giác ABC vuông tại A, M là trung điểm của AC. Gọi D và E lần lượt là hình chiếu của A và C xuống đường thẳng BM.
a) Chứng minh M là trung điểm của DE
b) So sánh BD+BE vs 2AB
Xét tam giác ADM và tam giác CEM có:
ADM = CEM (= 90 độ)
AM = MC (M là trung điểm của AC)
AMD = CME (đối đỉnh)
=> tam giác ADM = tam giác CEM
=> DM = EM (2 cạnh tương ứng)
=> M là trung điểm của DE
b) ta có:
BD + BE = BD + BD + DE
mà ED = DM+EM và DM = EM
=> BD + BE = 2BD + 2DM = 2BM
trong tam giác ABM có A là góc vuông
=> AB^2 + AM^2 = BM^2 (định lí Pytago)
=> AB<BM
=> 2AB < 2BM
=> 2AB < BD+BE
Cho tam giác ABC vuông tại A có AB<AC, đường cao AH và trung tuyến AE. Gọi D, F lần lượt là hình chiếu của E trên AB, AC. Lấy M sao cho F là trung điểm của EM và N sao cho F là trung điểm của BN. Chứng minh A, N, M thẳng hàng
Xét ΔABC có
E là trung điểm của BC
EF//AB
Do đó: F là trung điểm của AC
Xét tứ giác AECM có
F là trung điểm của AC
F là trung điểm của EM
Do đó: AECM là hình bình hành
=>AM//CE
=>AM//CB
Xét tứ giác NMBE có
F là trung điểm chung của NB và ME
=>NMBE là hình bình hành
=>NM//BE
=>NM//BC
AM//BC
NM//BC
mà AM,NM có điểm chung là M
nên M,N,A thẳng hàng
Xét tứ giác