Chứng minh rằng: \(\sum\limits^n_{k=1}\dfrac{k}{k^4+5k^2+6}< \dfrac{1}{2}\)
Mình cần gấp ạ
Sử dụng đồng nhất thức \(k^2=C^1_k+2C^2_k\) để chứng minh rằng :
\(1^2+2^2+....+n^2=\sum\limits^n_{k=1}C^1_k+2\sum\limits^n_{k=2}C^2_k=\dfrac{n\left(n+1\right)\left(2n+1\right)}{6}\)
Ta có \(A=\sum\limits^n_{k=1}k^2=\sum\limits^n_{k=1}C^1_k+2\sum\limits^n_{k=1}C^2_k\)
Kết hợp với bài 2.15 ta được :
\(A=C_{n+1}^2+2C^3_{n+1}=\dfrac{n\left(n+1\right)}{2}+\dfrac{\left(n-1\right)n\left(n+1\right)}{3}=\dfrac{n\left(n+1\right)\left(2n+1\right)}{6}\)
Rút gọn :
a, \(A=\sum\limits^n_{k=1}k.k!\)
b, \(B=\sum\limits^n_{k=2}\dfrac{k}{\left(k-1\right)!}\)
\(Un=\dfrac{4n}{12+\left(2+n^2\right)^2}\)
\(An=\sum\limits^n_{k=1}Uk\) , Tính lim An
Em cảm ơn ạ !!!!
\(u_n=\dfrac{4n}{n^4+4n^2+16}=\dfrac{4n}{n^4+8n^2+16-4n^2}=\dfrac{4n}{\left(n^2+4\right)^2-4n^2}=\dfrac{4n}{\left(n^2-2n+4\right)\left(n^2+2n+4\right)}\)
\(=\dfrac{1}{n^2-2n+4}-\dfrac{1}{n^2+2n+4}=\dfrac{1}{\left(n-1\right)^2+3}-\dfrac{1}{\left(n+1\right)^2+3}\)
Do đó:
\(A_n=\dfrac{1}{\left(1-1\right)^2+3}-\dfrac{1}{\left(1+1\right)^2+3}+\dfrac{1}{\left(2-1\right)^2+3}-\dfrac{1}{\left(2+1\right)^2+3}+...+\dfrac{1}{\left(n-1\right)^2+3}-\dfrac{1}{\left(n+1\right)^2+3}\)
\(=\dfrac{1}{0^2+3}-\dfrac{1}{2^2+3}+\dfrac{1}{1^2+3}-\dfrac{1}{3^2+3}+\dfrac{1}{2^2+3}-\dfrac{1}{4^2+3}+...+\dfrac{1}{\left(n-1\right)^2+3}-\dfrac{1}{\left(n+1\right)^2+3}\)
\(=\dfrac{1}{0^2+3}+\dfrac{1}{1^2+3}-\dfrac{1}{n^2+3}-\dfrac{1}{\left(n+1\right)^2+3}=\dfrac{7}{12}-\dfrac{1}{n^2+3}-\dfrac{1}{\left(n+1\right)^2+3}\)
\(\Rightarrow\lim\left(A_n\right)=\dfrac{7}{12}\)
Tìm lim un với un=\(\sum\limits^n_{k=1}sin^k\alpha\) (α≠\(\dfrac{\pi}{2}\) +kπ, k ϵ Z)
\(\left(x_n\right)\left\{{}\begin{matrix}x_1=2\\x_{n+1}=\dfrac{x_n+2+\sqrt{x_n^2+8x_n-4}}{2},n\in N,n>0\end{matrix}\right.\)
Đặt \(y_n=\sum\limits^n_{k=1}\dfrac{1}{x_n^2-4}\). Tìm lim yn
Tính \(lim\dfrac{\prod\limits^n_{k=1}\left(2k-1\right)}{\prod\limits^n_{k=1}\left(2k\right)}\)
Bạn tham khảo cách làm nha
https://diendantoanhoc.org/topic/106253-lim-nto-inftyprod-k1nfrac2k-12k/
Chứng minh:
a)
\(\sum\limits^n_{i=1}cos\dfrac{2\left(i-1\right)\pi}{n}=0\)
b) \(\sum\limits^n_{i=1}sin\dfrac{2\left(i-1\right)\pi}{n}=0\)
cho x1, x2,...,x5 và \(\sum\limits^5_{i=1}\dfrac{1}{1+x_i}=1.\)Chứng minh rằng \(\sum\limits^5_{i=1}\dfrac{x_i}{a+x_i^2}\le1\)
Điều kiện của $a$ là gì vậy bạn?