Ai giúp e bài này với ạ ?
Tính các tổng sau:
\(\sum\limits^n_{i=0}\) \(\dfrac{-1}{i!\left(n-i\right)!}\)
Chứng minh: \(A^{n+2}_{n+k}+A^{n+1}_{n+1}=k^2A^n_{n+k}\)
1/ Cho số nguyên tố p lẻ và \(p\equiv1\left(mod4\right)\)
Chứng minh số \(A=\sum\limits^{\dfrac{p-1}{2}}_{k=1}k.C^k_p\) là bội của \(p^2\)
2/ Cho các số nguyên dương k, m, n sao cho \(n\ge m+k;m\ge2k.\) Từ một nhóm gồm n người, trong đó có k cặp vợ chồng, có bao nhiêu cách chọn ra m người sao cho trong m người được chọn không có cặp vợ chồng nào.
Chứng minh rằng :
1) \(2C_n^k+5C_n^{k+1}+4C_n^{k+2}+C_n^{k+3}=C_{n+2}^{k+2}+C_{n+3}^{k+3}\)
2) \(C_n^k+3C_n^{k-1}+3C_n^{k-2}=C_{n+3}^k\)
3) \(k\left(k-1\right)C_n^k=n\left(n-1\right)C_{n-2}^{k-2}\)
Rút gọn:
\(A=\dfrac{6!}{\left(m-2\right)\left(m-3\right)}.\left[\dfrac{1}{\left(m+1\right)\left(m-4\right)}.\dfrac{\left(m+1\right)!}{\left(m-5\right)!5!}-\dfrac{m\left(m-1\right)!}{12.\left(m-4\right)!3!}\right]\) với \(m\ge5\)
Câu 1 : Rút gọn
\(G=\dfrac{6!}{\left(m-2\right)\left(m-3\right)}.\left[\dfrac{\left(m+1\right)!}{5!.\left(m-4\right)!.\left(m+1\right)}-\dfrac{m!}{12.3!.\left(m-4\right)!}\right]\)
Câu 2 : CMR
\(1+\dfrac{1}{1!}+\dfrac{1}{2!}+\dfrac{1}{3!}+...+\dfrac{1}{n!}< 3\forall n\in N\)
12, tìm hệ số x26trong khai triển : \(\left(1+x^7\right)^n\), x khác 0 biết :
\(C^1_{2n+1}+C^2_{2n+1}+...+C^n_{2n+1}=2^{20}-1\)
a) Ak10 = 720 thì k có giá trị là bao nhiêu?
b) tỉ số \(\dfrac{\left(n+3\right)!}{\left(n+1\right)!}\) bằng kết quả nào?
c)A2n =24 thì n có giá trị là?
d) A2n + A22n =110 thì n có giá trị là?
e) A22n - 24 = A2n thì n có giá trị là?
Chứng minh : \(\Sigma\dfrac{C_n^k}{C_{n+k+2}^{k+1}}\)=\(\dfrac{1}{2}\) với mọi n \(\ge\)2
( tổng \(\Sigma\) k chạy từ 0 đến n)