chứng minh rằng : số 7;11;13 là ước của số có dạng abcabe (có dấu gạch ngang trên đầu)
1/ Chứng minh rằng nếu ab + cd + eg chia hết cho 11 thì abcdeg chia hết cho 11
2/ Cho abc + deg chia hết cho 37. Chứng minh rằng abcdeg chia hết cho 37
3/ Cho abc - deg chia hết cho 7. Chứng minh rằng abcdeg chia hết cho 7
4/ Cho tám số tự nhiên có 3 chữ số. Chứng minh rằng trong 8 số đó tồn tại 2 số mà khi viết liên tiếp nhau thì tạo thành một số có 6 chữ số chia hết cho 7
5/ Tìm chữ số a biết rằng 20a20a20a chia hết cho 7
BIẾT ĐƯỢC BÀI NÀO THÌ GIÚP MINK GIẢI BÀI ĐÓ NHÉ!!!!!!!!!!!!!!!!! THANK YOU!!!!!!!!!!!!!!!!!!
a) Chứng minh rằng 7^n+4 và 7^n có 2 chữ số tạn cùng giống nhau .
b) Chứng minh rằng a^5 và a có chữ số tận cùng giống nhau.
Câu 9 : Chứng minh rằng: 2515 + 1020 là hợp số
Câu 10 : Chứng minh rằng tổng của 4 số nguyên tố bất kỳ lớn hơn 7 có kết quả là hợp số.
Câu 9:
Vì 2015;1020 đều chia hết cho 5
nên 2015+1020 là hợp số
Câu 2 : Chứng minh rằng tổng của 4 số nguyên tố bất kỳ lớn hơn 7 có kết quả là hợp số.
Câu 1 : Chứng minh rằng: 25^15+10^20 là hợp số
Câu 1:
\(25^{15}+10^{20}\)
\(=5^{30}+5^{20}\cdot2^{20}\)
\(=5^{20}\left(5^{10}+2^{20}\right)⋮5^{20}\)
=>Đây là hợp số
1 . a) Cho abc + deg + chia hết cho 37 . Chứng minh rằng abcdeg chia hết cho 37 .
b) Cho abc - deg chia hết cho 7 . Chứng minh rằng abcdeg chia hết cho 7 .
c) Cho 8 số tự nhiên có 3 chữ số . Chứng minh rằng trong 8 số đó , tồn tại hai số mà khi viết liên tiếp nhau thì tạo thanh một số có sáu chữ số chia hết cho 7
a, Ta có: abcdeg = 1000. abc + deg
= 999. abc + abc + deg
= 37. 27 . abc + abc + deg
Có 37. 27. abc chia hết cho 37
và abc + deg chia hết cho 37.
Vậy abcdeg chia hết cho 37 với abc + deg chia hết cho 37.
b, Ta có: abcdeg = 1000. abc + deg
= 1001 . abc - abc + deg
= 7. 143 . abc - (abc - deg)
Có 7, 143 , abc chia hết cho 7
và abc - deg chia hết cho 7
Vậy abcdeg luôn chia hết cho 7 với abc - deg chia hết cho 7.
c, Trong 8 số tự nhiên liên tiếp thì luôn có các dạng số dư của một số khi chia cho 7 là \(\left\{0;1;2;3;4;5;6\right\}\)nhưng có tới tám số và 7 số dư thì chắc chắn trong tám số đó chắc chắn có 2 số đồng dư với nhau gọi là abc và deg. Mà abc và deg đồng dư với nhau thì hiệu abc - deg chia hết cho 7. Theo câu b thì abcdeg chia hết cho 7 với abc - deg chia hết cho 7. Suy ra abcdeg chia hết cho 7 với abc - deg chia hết cho 7.
Vậy trong 8 số tự nhiên có 3 chữ số, tồn tại hai số mà khi viết liêm tiếp nhau thì tạo thành một số có sáu chữ số chia hết cho 7.
Chúc bạn học tốt :)
Cho biết số abc ⋮ 7 Chứng minh rằng:2a +3b + c ⋮ 7
Ta có: \(\overline{abc}=100a+10b+c\)
\(=98a+2a+7b+3b+c\)
\(=7\left(14a+b\right)+\left(2a+3b+c\right)\)
mà \(\overline{abc}⋮7\)
và \(7\left(14a+b\right)⋮7\)
nên \(2a+3b+c⋮7\)
Ta có : ABC=100a+10b+c
= 98a+2a+7b+3c+c
=7.(14a+b)+(3a+2b+c)
Mà abc chia hết cho 7
=>3a+2b+c chia hết cho 7 (điều phải chứng minh)
1 cho abc-deg chia hết cjo 7
a, chứng minh rằng abcdeg chia hết 7
2 a, chứng minh rằng ; Tích của ba số tự nhiên liên tiếp thì chia hết cho 3 và cho 2
b, chứng minh ; Tích của 4 số tự nhiên liên tiếp luôn chia hết cho 4
c, chứng minh (n+3).(n+4).(2n+7) chia hết cho 3
1) Cho a là số nguyên ; m,n là số tự nhiên . Chứng minh rằng \(â^{6m}+a^{6n}⋮7\Leftrightarrow a⋮7\)
2) Cho p là số tự nhiên > 7. Chứng minh rằng \(3^p-2^p-1⋮42p\)
nơi bài 2 là Cho p là số nguyên tố > 7 nha
Bài 1: Cho biết số abc chia hết cho 7 . Chứng minh rằng 2.a + 3.b + c chia hết cho 7
Bài 2 :Biết a+b chia hết cho 7 .Chứng minh rằng aba chia hết cho 7
Bài 3 :Chứng minh rằng : 9. 10n + 18 chia hết cho 27
Bài 4: Biết a+b+c chia hết cho 7 . Chứng minh rằng : nếu abc chia hết cho 7 thì b=c
Chứng minh rằng : hai số tự nhiên liên tiếp luôn là hai số nguyên tố cùng nhau
Chứng minh rằng:2n+5 và 3n+7 là hai số nguyên tố cùng nhau
1)Gọi 2 số tự nhiên liên tiếp là n và n+1
Đặt ƯCLN(n,n+1)=d
Ta có: n chia hết cho d
n+1 chia hết cho d
=>n+1-n chia hết cho d
=>1 chia hết cho d
=>d=1
=>ƯCLN(n,n+1) =1
=>n và n+1 là 2 số nguyên tố cùng nhau
2)Gọi ƯCLN(2n+5,3n+7)=d
Ta có: 2n+5 chia hết cho d=>3.(2n+5) chia hết cho d=>6n+15 chia hết cho d
3n+7 chia hết cho d=>2.(3n+7) chia hết cho d=>6n+14 chia hết cho d
=>6n+15-(6n+14) chia hết cho d
=>1 chia hết cho d
=>d=1
=>ƯCLN(2n+5,3n+7)=1
=>2n+5 và 3n+7 là 2 số nguyên tố cùng nhau
a)
Gọi 2 số tự nhiên liên tiếp là n; n+1
Gọi ƯCLN ( n;n+1) la d
=> n chia hết cho d; n+1 chia hết cho d
=> n+1-n chia hết cho d
=> 1 chia hết cho d
=> d =1
=> ƯCLN ( n;n+1) =1
=> hai số tự nhiên liên tiếp luôn là hai số nguyên tố cùng nhau
b)
Gọi ƯCLN( 2n+5;3n+7) la d
=> 2n+5 chia hết cho d ; 3n+7 chia hết cho d
=> 3.(2n+5) chia hết cho d ; 2.(3n+7) chia hết cho d
=> 6n+15 chia hết cho d ; 6n+14 chia hết cho d
=> 6n+15-(6n+14) chia hết cho d
=> 1 chia hết cho d
=> d= 1
=> ƯCLN( 2n+5;3n+7)=1
=>2n+5 và 3n+7 là hai số nguyên tố cùng nhau
Gọi (2n+5;3n+7) chia hết cho d
=> (2n+5) chia hết cho d
3(2n+5) chia hết cho d
(6n+15) (1) chia hết cho d
(3n+7) chia hết cho d
2(3n+7) chia hết cho d
(6n+14) (2) chia hết cho d
Lấy (1) - (2) = (6n+15) - (6n+14) = 1 chia hết cho d
Vậy (2n+5) và ( 3n+7) là hai nguyên tố cùng nhau