chứng minh:x^4+y^4+(x+y)^4=2(x^2+xy+y^2)^2
Cho x+y=3. Chứng minh:x2y<=4
Cho x,y,z là các số khác 0 và x^2=yz,y^2=xz,z^2=xy. Chứng minh:x=y=z
Ta có: x2=yz,y2=xz,z2=xy
=>x2+y2+z2=yz+xz+xy
=>2x2+2y2+2z2=2xy+2yz+2xz
=>2x2+2y2+2z2-2xy-2yz-2xz=0
=>(2x2-2xy)+(2y2-2yz)+(2z2-2xz)=0
=>(x2-2xy+x2)+(y2-2yz+y2)+(z2-2xz+z2)=0
=>(x-y)2+(y-z)2+(z-x)2=0
Ta thấy : (x-y)2>0 với mọi x,y
(y-z)2>0 với mọi y,z
(z-x)2>0 với mọi x,z
=>(x-y)2+(y-z)2+(z-x)2>0 với mọi x,y,z
Mà (x-y)2+(y-z)2+(z-x)2=0
=>(x-y)2=(y-z)2=(z-x)2=0
=>x-y=y-z=z-x=0
=>x=y=z
Chứng minh:x4+y4\(\ge\frac{\left(x+y\right)^2}{8}\)
Chứng minh:x^2-y^2=(x+y)(x-y) bằng 2 cách
C1: \(\left(x+y\right)\left(x-y\right)=x\left(x-y\right)+y\left(x-y\right)=x^2-xy+xy-y^2=x^2-y^2\)
C2: x2-y2=(x-y)(x+y)
<=> x2-y2-(x-y)(x+y)=0
<=> x2-y2-[x(x+y)-y(x+y)] = 0
<=> x2-y2-(x2+xy-xy-y2) = 0
<=> x2-y2-(x2-y2) = 0
<=> x2-y2-x2+y2 = 0
<=> 0 =0 (đúng)
Vậy .....
x^2 - y^2 = ( x + y )( x - y )
Co ( x + y )( x - y ) = x^2 - xy + xy - y^2 = x^2 - y^2
Ma x^2 - y^2 = x^2 - y^2
=> x^2 - y^2 = ( x + y )( x - y )
chứng minh các đẳng thức sau:
a)(x+y)(x^3-x^2y+xy^2+y^3)=x^4+y^4
b)(x-y)(x^3+x^2y+xy^2+y^3)=x^4-y^4
c)(x+y)(x^4-x^3y+x^2y^2-xy^3+y^4)=x^5+y^5
d)(x-y)(x^4+x^3y+x^2y^2+xy^3+y^4)=x^5-y^5
đối với các câu này bạn hãy khai triển phần nào dài bằng hàng dẳng thức rồi thu gọn lại nếu đúng thì vế trái bằng vế phải
chứng minh đẳng thức
\(\left(\frac{x-y}{2y-x}-\frac{x^2+y^2+y-2}{x^2-xy-2y^2}\right):\frac{x^4+4x^2y^2+y^4-4}{x^2+y+xy+x}:\frac{1}{2x^2+y+2}=\frac{x+1}{2y-x}\)
x^4+y^4*(x+y)^4=2(x^2+xy+y^2)^2
Chứng minh 2 hằng đẳng thức trên bằng nhau
Lấy hai vế trừ đi cho nhau rồi nếu có kết quả =0 thì hai hằng đẳng thức này bằng nhau
Cho biết tồn tại 2 số thực x,y thỏa: x - y = xy = 2. Chứng minh x^4 + y^4 = 2x^2(x + 1) - 2y^2(y - 1)