Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vũ Chấn Hưng
Xem chi tiết
lipphangphangxi nguyen k...
26 tháng 4 2016 lúc 20:20

đề sai

Thảo Minh Donna
Xem chi tiết
Mai Ngọc
6 tháng 2 2016 lúc 10:30

Ta có: x2=yz,y2=xz,z2=xy

=>x2+y2+z2=yz+xz+xy

=>2x2+2y2+2z2=2xy+2yz+2xz

=>2x2+2y2+2z2-2xy-2yz-2xz=0

=>(2x2-2xy)+(2y2-2yz)+(2z2-2xz)=0

=>(x2-2xy+x2)+(y2-2yz+y2)+(z2-2xz+z2)=0

=>(x-y)2+(y-z)2+(z-x)2=0

Ta thấy : (x-y)2>0 với mọi x,y

(y-z)2>0 với mọi y,z

(z-x)2>0 với mọi x,z

=>(x-y)2+(y-z)2+(z-x)2>0 với mọi x,y,z

Mà (x-y)2+(y-z)2+(z-x)2=0

=>(x-y)2=(y-z)2=(z-x)2=0

=>x-y=y-z=z-x=0

=>x=y=z

Nguyễn Thị Vân Anh
Xem chi tiết
Doraemon
Xem chi tiết
Dương Lam Hàng
26 tháng 6 2018 lúc 14:42

C1: \(\left(x+y\right)\left(x-y\right)=x\left(x-y\right)+y\left(x-y\right)=x^2-xy+xy-y^2=x^2-y^2\)

C2: x2-y2=(x-y)(x+y)

  <=> x2-y2-(x-y)(x+y)=0

   <=> x2-y2-[x(x+y)-y(x+y)] = 0

   <=> x2-y2-(x2+xy-xy-y2) = 0

    <=> x2-y2-(x2-y2) = 0

    <=> x2-y2-x2+y2 = 0

    <=> 0 =0 (đúng)

Vậy .....

Never_NNL
26 tháng 6 2018 lúc 14:36

x^2 - y^2 = ( x + y )( x - y )

Co ( x + y )( x - y ) = x^2 - xy + xy - y^2 = x^2 - y^2

Ma x^2 - y^2 = x^2 - y^2

=> x^2 - y^2 = ( x + y )( x - y ) 

Đỗ Thị Hà Anh
Xem chi tiết
khanhhuyen6a5
Xem chi tiết
Nhã Doanh
26 tháng 5 2018 lúc 17:09

Khai triển rồi thu gọn

Phạm Ngọc Nam
19 tháng 9 2019 lúc 21:09

đối với các câu này bạn hãy khai triển phần nào dài bằng hàng dẳng thức rồi thu gọn lại nếu đúng thì vế trái bằng vế phải

MInemy Nguyễn
Xem chi tiết
Hoàng Tử Ăn Xin
Xem chi tiết
Trần Ngọc Linh Chi
16 tháng 6 2016 lúc 16:19

Lấy hai vế trừ đi cho nhau rồi nếu có kết quả =0 thì hai hằng đẳng thức này bằng nhau

Nguyễn Minh Hiến
Xem chi tiết