tính giá trị của các biểu thức sau:
a,\(\frac{9x^5-xy^4-18x^4y+2y^5}{3x^3y^2+xy^4-6x^2y^3-2y^5}\)biết x,y≠0,x≠2y và \(\frac{x}{y}=\frac{2}{3}\)
b,\(\frac{x^2+4y^2-4x\left(y+1\right)+8y-21}{\left(7+2y-x\right)^2-\left(7+2y-x\right)\left(2x+1-4y\right)}\)biết y≠\(\frac{1}{7},\)2y≠-7, 2y-x≠-2 và \(\frac{7x}{7y-1}=2\)
cm các biểu thức sau ko phụ thuộc vào biến:
a,\(\left[\frac{2\left(x+1\right)\left(y+1\right)}{\left(x+1\right)^2-\left(y+1\right)^2}+\frac{x-y}{2x+2y+4}\right].\frac{2x+2}{x+y+2}+\frac{y+1}{y-x}\)
b,\(\left[2\left(x+y\right)+1-\frac{1}{1-2x-2y}\right]:\left[2x+2y-\frac{4x^2+8xy+4y^2}{2x+2y-1}\right]+2\left(x+y\right)\)
\(\left(1+\frac{1}{x}\right)^2+\left(1+\frac{1}{y}\right)^2=1+\frac{2}{x}+\frac{1}{x^2}+1+\frac{2}{y}+\frac{1}{y^2}\)
\(=2+\frac{2x+1}{x^2}+\frac{2y+1}{y^2}\)\(=2+\frac{2xy^2+y^2+2x^2y+x^2}{x^2y^2}\)\(=2+\frac{2xy\left(x+y\right)+\left(x+y\right)^2-2xy}{x^2y^2}\)
thay x+y=1 vào biểu thức, ta có:
\(2+\frac{2xy+1-2xy}{x^2y^2}=2+\frac{1}{x^2y^2}=2+\left(\frac{1}{xy}\right)^2\)
vì \(\left(\frac{1}{xy}\right)^2\ge0\) nên GTNN của biểu thức là 2
cái này mình giải dùm một bạn của mình, mọi người đi qua đừng chú ý nhé
Chứng minh đẳng thức \(\left(\frac{2x+2y-z}{3}\right)^2+\left(\frac{2y+2z-x}{3}\right)^2+\left(\frac{2z+2x-y}{3}\right)^2=x^2+y^2+z^2\)
Bài 1 :Thực hiện phép tính
a, \(\frac{2x}{x^2+2xy}+\frac{y}{xy-2y^2}+\frac{4}{x^2-4y^2}\)
b\(\frac{1}{x-y}+\frac{3xy}{y^3-x^3}+\frac{x-y}{x^2+xy+y^2}\)
c, \(\frac{xy}{2x-y}-\frac{x^2-1}{y-2x}\)
d,\(\frac{2\left(x+y\right)\left(x-y\right)}{x}-\frac{-2y^2}{x}\)
Bài 2: Thực hiện phép tính
a,\(\frac{4x+1}{2}-\frac{3x+2}{3}\)
b,\(\frac{x+3}{x}-\frac{x}{x-3}+\frac{9}{x^2-3x}\)
c,\(\frac{x+3}{x^2+1}-\frac{1}{x^2+2}\)
e,\(\frac{3}{2x^2+2x}+\frac{2x-1}{x^2-1}-\frac{2}{x}\)
d,\(\frac{1}{3x-2}-\frac{4}{3x+2}-\frac{-10x+8}{9x^2-4}\)
f,\(\frac{3x}{5x+5y}-\frac{x}{10x-10y}\)
Rút gọn các biểu thức rồi tính giá trị:
a) \(\frac{x^2y\left(y-x\right)-xy^2\left(x-y\right)}{3y^2-2x^2}\), với x = -3; y = \(\frac{1}{2}\)
b) \(\frac{\left(8x^3-y^3\right)\left(4x^2-y^2\right)}{\left(2x+y\right)\left(4x^2-4xy+y^2\right)}\), với x = 2; y = -\(\frac{1}{2}\)
Cho \(A=\frac{\left(x^2+y\right)\left(y+\frac{1}{4}\right)+x^2y^2+\frac{3}{4}\left(y+\frac{1}{3}\right)}{x^2y^2+1+\left(x^2-y\right)\left(1-y\right)}\)
a) CM giá trị của A ko phụ thuộc x
b) Tìm minA
chứng minh các phân thức sau
a) \(\frac{3y}{4}=\frac{6xy}{8x}\left(x\ne0\right)\)
b)\(\frac{-3x^2}{2y}=\frac{3x^2}{-2y}\left(y\ne0\right)\)
c)\(\frac{2\left(x-y\right)}{3\left(y-x\right)}=\frac{-2}{3}\left(x\ne y\right)\)
thực hiện phép tính
a,\(x^3+\left[\frac{x\left(2y^3-x^3\right)}{x^3+y^3}\right]^3-\left[\frac{y\left(2x^3-y^3\right)}{x^3+y^3}\right]^3\)
b,\(\frac{\frac{x\left(x+y\right)}{x-y}+\frac{x\left(x+z\right)}{x-z}}{1+\frac{\left(y-z\right)^2}{\left(x-y\right)\left(x-z\right)}}+\frac{\frac{y\left(y+z\right)}{y-z}+\frac{y\left(y+x\right)}{y-x}}{1+\frac{\left(z-x\right)^2}{\left(y-z\right)\left(y-x\right)}}+\frac{\frac{z\left(z+x\right)}{z-x}+\frac{z\left(z+y\right)}{z-y}}{1+\frac{\left(x-y\right)^2}{\left(z-x\right)\left(z-y\right)}}\)
c,\(\left[\frac{y+z-2x}{\frac{\left(y-z\right)^3}{y^3-z^3}+\frac{\left(x-y\right)\left(x-z\right)}{y^2+yz+z^2}}+\frac{z+x-2y}{\frac{\left(z-x\right)^3}{z^3-x^3}+\frac{\left(y-z\right)\left(y-x\right)}{z^2+xz+x^2}}+\frac{x+y-2z}{\frac{\left(x-y\right)^3}{x^3-y^3}+\frac{\left(z-x\right)\left(z-y\right)}{x^2+xy+y^2}}\right]:\frac{1}{x+y+z}\)