Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Kiên Lê khả
cho pt x2-2(m+2)x+80                                                                                            a)giải pt vs m 1                                                                                                       b)cm rằng pt luôn có nghiệm vs mọi m                                                                    c)tìm m để pt có 2 nghiệm pb                                                                                   d)tìm m để pt có 2 nghiệm x1x2tmđk x12+x22-3x1x2     ...
Đọc tiếp

Những câu hỏi liên quan
Phương Nguyễn 2k7
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 2 2022 lúc 22:19

a: Khi m=2 thì (1) trở thành \(x^2+2x-3=0\)

=>(x+3)(x-1)=0

=>x=-3 hoặc x=1

b: \(\text{Δ}=2^2-4\cdot\left(m-5\right)=4-4m+20=-4m+24\)

Để phương trình có hai nghiệm thì -4m+24>=0

=>-4m>=-24

hay m<=6

Theo đề, ta có: \(x_1x_2\left(x_1+x_2\right)=8\)

\(\Leftrightarrow-2\left(m-5\right)=8\)

=>m-5=-4

hay m=1(nhận)

chanh
Xem chi tiết
Akai Haruma
21 tháng 5 2022 lúc 21:07

Bạn nên viết đề bằng công thức toán (biểu tượng $\sum$ bên trái khung soạn thảo) để được hỗ trợ tốt hơn.

chanh
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 5 2022 lúc 20:36

a: Khi m=1/2 thì \(x^2-2x-\dfrac{1}{4}-4=0\)

\(\Leftrightarrow x^2-2x-\dfrac{17}{4}=0\)

\(\Leftrightarrow4x^2-8x-17=0\)

\(\Leftrightarrow\left(2x-2\right)^2=21\)

hay \(x\in\left\{\dfrac{\sqrt{21}+2}{2};\dfrac{-\sqrt{21}+2}{2}\right\}\)

b: \(\text{Δ}=\left(-2\right)^2-4\left(-m^2-4\right)\)

\(=4+4m^2+16=4m^2+20>0\)

Do đó: Phương trình luôn có hai nghiệm phân biệt

Thanh Nga Nguyễn
Xem chi tiết
Xem chi tiết
Thanh Liêm
Xem chi tiết
Hải Anh
9 tháng 4 2019 lúc 20:56

a) Bạn tự thay tính nhé

b) Để pt có 2 nghiệm phân biệt thì \(\Delta'>0\)

\(\Leftrightarrow m^2+2m+1-m^2+1>0\)

\(\Leftrightarrow2m+2>0\Leftrightarrow m>-1\)

Theo HT Vi et ta có: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1x_2=m^2-1\end{matrix}\right.\)

Ta có: \(x_1^2+x_2^2=x_1x_2+8\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-3x_1x_2-8=0\)

\(\Leftrightarrow\left(2m+2\right)^2-3\left(m^2-1\right)-8=0\)

\(\Leftrightarrow4m^2+8m+4-3m^2+3-8=0\)

\(\Leftrightarrow m^2+8m-1=0\)

Giải \(\Delta'\Rightarrow m=\pm\sqrt{17}-4\) . Lấy \(m=\sqrt{17}-4\)

Vậy m = \(\sqrt{17}-4\) là giá trị cần tìm.

Thanh Nga Nguyễn
Xem chi tiết
Phương Uyên
Xem chi tiết
Nguyễn Ngọc Huy Toàn
22 tháng 3 2022 lúc 13:10

a.Bạn thế vào nhé

b.\(\Delta=3^2-4m=9-4m\)

Để pt vô nghiệm thì \(\Delta< 0\)

\(\Leftrightarrow9-4m< 0\Leftrightarrow m>\dfrac{9}{4}\)

c.Ta có: \(x_1=-1\)

\(\Rightarrow x_2=-\dfrac{c}{a}=-m\)

d.Theo hệ thức Vi-ét, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=-3\\x_1.x_2=m\end{matrix}\right.\)

1/ \(x_1^2+x_2^2=34\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=34\)

\(\Leftrightarrow\left(-3\right)^2-2m=34\)

\(\Leftrightarrow m=-12,5\)

..... ( Các bài kia tương tự bạn nhé )

Kim Oanh
Xem chi tiết
Nguyễn Ngọc Huyền Anh
6 tháng 4 2017 lúc 19:27

a, Thay m = 2 vào pt ta được :

x2 - (2.2 + 1)x + 22 + 1 = 0

<=> x2 - 5x + 5 = 0

Ta có \(\Delta=b^2-4ac\)

= 25 - 20 = 5

=> \(\sqrt{\Delta}\) = \(\sqrt{5}\)

=> Pt có 2 nghiệm phân biệt \(\left[{}\begin{matrix}x_1=\dfrac{-b+\sqrt{\Delta}}{2a}\\x_2=\dfrac{-b-\sqrt{\Delta}}{2a}\end{matrix}\right.\)

<=> \(\left[{}\begin{matrix}x_1=\dfrac{5+\sqrt{5}}{2}\\x_2=\dfrac{5-\sqrt{5}}{2}\end{matrix}\right.\)

b, Để pt (*) có hai nghiệm phân biệt

<=> \(\Delta\) \(\ge\) 0

<=> (2m - 1)2 - 4(m2 + 1) \(\ge\) 0

<=> 4m2 - 4m + 1 - 4m2 - 4 \(\ge\) 0

<=> -4m - 3 \(\ge\) 0

<=> m \(\ge\dfrac{-3}{4}\)