cho pt x2-2(m+2)x+8=0 a)giải pt vs m =1 b)cm rằng pt luôn có nghiệm vs mọi m c)tìm m để pt có 2 nghiệm pb d)tìm m để pt có 2 nghiệm x1x2tmđk x12+x22-3x1x2 giúp mk vs ạ mik đang cần bài gấp để nộp
cho pt x2+2x+m-5=0 (1) vs m là tham số
a, giải pt (1) khi m=2
b, tìm các giá trị của m để pt (1) có 2 nghiệm x1;x2 thỏa mãn \(x_1^2x_2+x_1x_2^2=8\)
a: Khi m=2 thì (1) trở thành \(x^2+2x-3=0\)
=>(x+3)(x-1)=0
=>x=-3 hoặc x=1
b: \(\text{Δ}=2^2-4\cdot\left(m-5\right)=4-4m+20=-4m+24\)
Để phương trình có hai nghiệm thì -4m+24>=0
=>-4m>=-24
hay m<=6
Theo đề, ta có: \(x_1x_2\left(x_1+x_2\right)=8\)
\(\Leftrightarrow-2\left(m-5\right)=8\)
=>m-5=-4
hay m=1(nhận)
giải giùm e câu c vs ạ
c4
cho pt ẩn x: x2−2x−m2−4=0x2−2x−m2−4=0(1)
a/ giải pt đã cho khi m=1212
b/ chứng minh pt luôn có 2 nghiệm phân biệt vs mọi m
c/ tính giá trị của m để pt (1) có 2 nghiệm x1,x2 sao cho 2x1,x2(2-3x1)=2
Bạn nên viết đề bằng công thức toán (biểu tượng $\sum$ bên trái khung soạn thảo) để được hỗ trợ tốt hơn.
c4
cho pt ẩn x: \(x^2-2x-m^2-4=0\)(1)
a/ giải pt đã cho khi m=\(\dfrac{1}{2}\)
b/ chứng minh pt luôn có 2 nghiệm phân biệt vs mọi m
c/ tính giá trị của m để pt (1) có 2 nghiệm x1,x2 sao cho 2x1,x2(2-3x1)=2
a: Khi m=1/2 thì \(x^2-2x-\dfrac{1}{4}-4=0\)
\(\Leftrightarrow x^2-2x-\dfrac{17}{4}=0\)
\(\Leftrightarrow4x^2-8x-17=0\)
\(\Leftrightarrow\left(2x-2\right)^2=21\)
hay \(x\in\left\{\dfrac{\sqrt{21}+2}{2};\dfrac{-\sqrt{21}+2}{2}\right\}\)
b: \(\text{Δ}=\left(-2\right)^2-4\left(-m^2-4\right)\)
\(=4+4m^2+16=4m^2+20>0\)
Do đó: Phương trình luôn có hai nghiệm phân biệt
Cho pt : x^2-2?(m-1)x+m+1=0
a) GIẢI pt vs m=-4
b) Vs giá trị nào của m thì pt có 2 nghiệm phân biệt
c) Tìm m để pt có 2 nghiệm x1, x2 thỏa mãn x1=3x2
Cho phương trình : 3x2 - 2(3m-1)x-4m=0 (1)
a) Giải pt với m = 0
b) Giải pt với m=-1
c) CMR pt luôn có nghiệm vs mọi m
d) Gọi x1 , x2 là nghiệm của pt . Tìm m để | x1 - x2|=1
Cho pt: x^2-2(m+1)x+m^2-1=0
A; Giải pt với m=2
B; tìm m để pt cón 2 nghiệm phân biêt x1,x2 thoả mãn:x1^2+x2^2=x1.x2+8
a) Bạn tự thay tính nhé
b) Để pt có 2 nghiệm phân biệt thì \(\Delta'>0\)
\(\Leftrightarrow m^2+2m+1-m^2+1>0\)
\(\Leftrightarrow2m+2>0\Leftrightarrow m>-1\)
Theo HT Vi et ta có: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1x_2=m^2-1\end{matrix}\right.\)
Ta có: \(x_1^2+x_2^2=x_1x_2+8\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-3x_1x_2-8=0\)
\(\Leftrightarrow\left(2m+2\right)^2-3\left(m^2-1\right)-8=0\)
\(\Leftrightarrow4m^2+8m+4-3m^2+3-8=0\)
\(\Leftrightarrow m^2+8m-1=0\)
Giải \(\Delta'\Rightarrow m=\pm\sqrt{17}-4\) . Lấy \(m=\sqrt{17}-4\)
Vậy m = \(\sqrt{17}-4\) là giá trị cần tìm.
Cho pt : x^2-2?(m-1)x+m+1=0
a) GIẢI pt vs m=-4
b) Vs giá trị nào của m thì pt có 2 nghiệm phân biệt
c) Tìm m để pt có 2 nghiệm x1, x2 thỏa mãn x1=3x2
Cho pt bậc 2 ẩn x: x2 + 3x + m = 0. a) Giải pt (1) khi m = 0; m = -4. b) Tìm m để pt (1) vô nghiệm. c) Tìm m để pt (1) có một nghiệm là -1. Tìm nghiệm kia. d) Cho x1, x2 là 2 nghiệm của pt (1). Không giải pt, hãy tìm giá trị của m để: 1/ x1^2 + x2^2=34 2/ x1 - x2=6 3/ x1=2x2 4/ 3x1+2x2=20 5/ x1^2-x2^2=30.
a.Bạn thế vào nhé
b.\(\Delta=3^2-4m=9-4m\)
Để pt vô nghiệm thì \(\Delta< 0\)
\(\Leftrightarrow9-4m< 0\Leftrightarrow m>\dfrac{9}{4}\)
c.Ta có: \(x_1=-1\)
\(\Rightarrow x_2=-\dfrac{c}{a}=-m\)
d.Theo hệ thức Vi-ét, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-3\\x_1.x_2=m\end{matrix}\right.\)
1/ \(x_1^2+x_2^2=34\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=34\)
\(\Leftrightarrow\left(-3\right)^2-2m=34\)
\(\Leftrightarrow m=-12,5\)
..... ( Các bài kia tương tự bạn nhé )
Cho pt: X^2-(2m+1)x+m^2+1=0 (*)
a) giải pt vs m=2
b)tìm đkiện của m để pt (*) có 2 nghiệm phân biệt
c) tìm m để pt có 2 nghiệm x1;x2 thỏa mãn :x1=2x2
a, Thay m = 2 vào pt ta được :
x2 - (2.2 + 1)x + 22 + 1 = 0
<=> x2 - 5x + 5 = 0
Ta có \(\Delta=b^2-4ac\)
= 25 - 20 = 5
=> \(\sqrt{\Delta}\) = \(\sqrt{5}\)
=> Pt có 2 nghiệm phân biệt \(\left[{}\begin{matrix}x_1=\dfrac{-b+\sqrt{\Delta}}{2a}\\x_2=\dfrac{-b-\sqrt{\Delta}}{2a}\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}x_1=\dfrac{5+\sqrt{5}}{2}\\x_2=\dfrac{5-\sqrt{5}}{2}\end{matrix}\right.\)
b, Để pt (*) có hai nghiệm phân biệt
<=> \(\Delta\) \(\ge\) 0
<=> (2m - 1)2 - 4(m2 + 1) \(\ge\) 0
<=> 4m2 - 4m + 1 - 4m2 - 4 \(\ge\) 0
<=> -4m - 3 \(\ge\) 0
<=> m \(\ge\dfrac{-3}{4}\)